UNIX ON-LINE Man Pages - Die Onlinehilfe

Die Syntax von Unixbefehlen wird in den entsprechenden Manpages dokumentiert. Hier können Sie diese Onlinehilfe für viele Standardbefehle abrufen.

Suchoptionen:
Seiten auflisten, welche beginnen mit:
A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z   ALPHA   NUM   ANDERE   ALLE
IPTABLES(8)                     iptables 1.4.8                     IPTABLES(8)

NAME
       iptables -- administration tool for IPv4 packet filtering and NAT

SYNOPSIS
       iptables [-t table] {-A|-D} chain rule-specification

       iptables [-t table] -I chain [rulenum] rule-specification

       iptables [-t table] -R chain rulenum rule-specification

       iptables [-t table] -D chain rulenum

       iptables [-t table] -S [chain [rulenum]]

       iptables [-t table] {-F|-L|-Z} [chain [rulenum]] [options...]

       iptables [-t table] -N chain

       iptables [-t table] -X [chain]

       iptables [-t table] -P chain target

       iptables [-t table] -E old-chain-name new-chain-name

       rule-specification = [matches...] [target]

       match = -m matchname [per-match-options]

       target = -j targetname [per-target-options]

DESCRIPTION
       Iptables  is  used  to set up, maintain, and inspect the tables of IPv4
       packet filter rules in the Linux kernel.  Several different tables  may
       be  defined.   Each  table contains a number of built-in chains and may
       also contain user-defined chains.

       Each chain is a list of rules which can match a set of  packets.   Each
       rule specifies what to do with a packet that matches.  This is called a
       `target', which may be a jump to a user-defined chain in the  same  ta-
       ble.

TARGETS
       A  firewall  rule specifies criteria for a packet and a target.  If the
       packet does not match, the next rule in the chain is the  examined;  if
       it does match, then the next rule is specified by the value of the tar-
       get, which can be the name of a user-defined chain or one of  the  spe-
       cial values ACCEPT, DROP, QUEUE or RETURN.

       ACCEPT  means to let the packet through.  DROP means to drop the packet
       on the floor.  QUEUE means to pass the packet to userspace.   (How  the
       packet can be received by a userspace process differs by the particular
       queue handler.  2.4.x and  2.6.x  kernels  up  to  2.6.13  include  the
       ip_queue  queue handler.  Kernels 2.6.14 and later additionally include
       the nfnetlink_queue queue handler.  Packets with a target of QUEUE will
       be  sent  to queue number '0' in this case. Please also see the NFQUEUE
       target as described  later  in  this  man  page.)   RETURN  means  stop
       traversing  this  chain  and  resume  at  the next rule in the previous
       (calling) chain.  If the end of a built-in chain is reached or  a  rule
       in a built-in chain with target RETURN is matched, the target specified
       by the chain policy determines the fate of the packet.

TABLES
       There are currently three independent tables (which tables are  present
       at  any  time  depends  on  the  kernel configuration options and which
       modules are present).

       -t, --table table
              This option specifies the packet matching table which  the  com-
              mand  should operate on.  If the kernel is configured with auto-
              matic module loading, an attempt will be made to load the appro-
              priate module for that table if it is not already there.

              The tables are as follows:

              filter:
                  This  is  the  default table (if no -t option is passed). It
                  contains the built-in chains INPUT (for packets destined  to
                  local  sockets),  FORWARD  (for packets being routed through
                  the box), and OUTPUT (for locally-generated packets).

              nat:
                  This table is consulted when a packet  that  creates  a  new
                  connection  is encountered.  It consists of three built-ins:
                  PREROUTING (for altering packets as soon as they  come  in),
                  OUTPUT  (for altering locally-generated packets before rout-
                  ing), and POSTROUTING (for  altering  packets  as  they  are
                  about to go out).

              mangle:
                  This table is used for specialized packet alteration.  Until
                  kernel 2.4.17 it had two built-in  chains:  PREROUTING  (for
                  altering  incoming  packets  before routing) and OUTPUT (for
                  altering locally-generated packets before  routing).   Since
                  kernel  2.4.18,  three  other  built-in chains are also sup-
                  ported: INPUT (for packets coming into the box itself), FOR-
                  WARD  (for  altering  packets being routed through the box),
                  and POSTROUTING (for altering packets as they are  about  to
                  go out).

              raw:
                  This  table  is  used mainly for configuring exemptions from
                  connection tracking in combination with the NOTRACK  target.
                  It registers at the netfilter hooks with higher priority and
                  is thus called before ip_conntrack, or any other IP  tables.
                  It  provides  the following built-in chains: PREROUTING (for
                  packets arriving via  any  network  interface)  OUTPUT  (for
                  packets generated by local processes)

OPTIONS
       The options that are recognized by iptables can be divided into several
       different groups.

   COMMANDS
       These options specify the desired action to perform. Only one  of  them
       can be specified on the command line unless otherwise stated below. For
       long versions of the command and option names, you  need  to  use  only
       enough  letters  to  ensure that iptables can differentiate it from all
       other options.

       -A, --append chain rule-specification
              Append one or more rules to the end of the selected chain.  When
              the  source  and/or  destination  names resolve to more than one
              address, a rule will be added for each possible address combina-
              tion.

       -D, --delete chain rule-specification
       -D, --delete chain rulenum
              Delete one or more rules from the selected chain.  There are two
              versions of this command: the rule can be specified as a  number
              in  the  chain  (starting  at 1 for the first rule) or a rule to
              match.

       -I, --insert chain [rulenum] rule-specification
              Insert one or more rules in the selected chain as the given rule
              number.   So,  if  the  rule  number is 1, the rule or rules are
              inserted at the head of the chain.  This is also the default  if
              no rule number is specified.

       -R, --replace chain rulenum rule-specification
              Replace a rule in the selected chain.  If the source and/or des-
              tination names resolve to multiple addresses, the  command  will
              fail.  Rules are numbered starting at 1.

       -L, --list [chain]
              List  all rules in the selected chain.  If no chain is selected,
              all chains are listed. Like every  other  iptables  command,  it
              applies  to  the specified table (filter is the default), so NAT
              rules get listed by
               iptables -t nat -n -L
              Please note that it is often used with the -n option,  in  order
              to  avoid  long reverse DNS lookups.  It is legal to specify the
              -Z (zero) option as well, in which case  the  chain(s)  will  be
              atomically  listed  and zeroed.  The exact output is affected by
              the other arguments given. The exact rules are suppressed  until
              you use
               iptables -L -v

       -S, --list-rules [chain]
              Print all rules in the selected chain.  If no chain is selected,
              all chains are printed like iptables-save. Like every other ipt-
              ables  command, it applies to the specified table (filter is the
              default).

       -F, --flush [chain]
              Flush the selected chain (all the chains in the table if none is
              given).   This  is  equivalent  to deleting all the rules one by
              one.

       -Z, --zero [chain [rulenum]]
              Zero the packet and byte counters in all  chains,  or  only  the
              given  chain,  or only the given rule in a chain. It is legal to
              specify the -L, --list (list) option as well, to see  the  coun-
              ters immediately before they are cleared. (See above.)

       -N, --new-chain chain
              Create  a  new user-defined chain by the given name.  There must
              be no target of that name already.

       -X, --delete-chain [chain]
              Delete the optional user-defined chain specified.  There must be
              no  references  to  the chain.  If there are, you must delete or
              replace the referring rules before the  chain  can  be  deleted.
              The  chain  must  be  empty,  i.e. not contain any rules.  If no
              argument is given, it will attempt to delete  every  non-builtin
              chain in the table.

       -P, --policy chain target
              Set  the policy for the chain to the given target.  See the sec-
              tion TARGETS for the legal targets.   Only  built-in  (non-user-
              defined)  chains  can  have  policies,  and neither built-in nor
              user-defined chains can be policy targets.

       -E, --rename-chain old-chain new-chain
              Rename the user specified chain to the user supplied name.  This
              is cosmetic, and has no effect on the structure of the table.

       -h     Help.   Give a (currently very brief) description of the command
              syntax.

   PARAMETERS
       The following parameters make up a rule specification (as used  in  the
       add, delete, insert, replace and append commands).

       [!] -p, --protocol protocol
              The  protocol of the rule or of the packet to check.  The speci-
              fied protocol can be one of tcp, udp, udplite,  icmp,  esp,  ah,
              sctp  or  all, or it can be a numeric value, representing one of
              these protocols or  a  different  one.   A  protocol  name  from
              /etc/protocols  is also allowed.  A "!" argument before the pro-
              tocol inverts the test.  The number zero is equivalent  to  all.
              Protocol  all  will  match  with  all  protocols and is taken as
              default when this option is omitted.

       [!] -s, --source address[/mask][,...]
              Source specification. Address can be either a  network  name,  a
              hostname,  a  network  IP  address  (with  /mask), or a plain IP
              address. Hostnames will be resolved once only, before  the  rule
              is  submitted  to  the  kernel.  Please note that specifying any
              name to be resolved with a remote query such as DNS is a  really
              bad idea.  The mask can be either a network mask or a plain num-
              ber, specifying the number of 1's at the left side of  the  net-
              work  mask.   Thus, a mask of 24 is equivalent to 255.255.255.0.
              A "!" argument before  the  address  specification  inverts  the
              sense  of  the  address.  The  flag  --src  is an alias for this
              option.  Multiple addresses can  be  specified,  but  this  will
              expand  to  multiple  rules (when adding with -A), or will cause
              multiple rules to be deleted (with -D).

       [!] -d, --destination address[/mask][,...]
              Destination  specification.   See  the  description  of  the  -s
              (source)  flag  for  a  detailed description of the syntax.  The
              flag --dst is an alias for this option.

       -j, --jump target
              This specifies the target of the rule; i.e., what to do  if  the
              packet  matches  it.   The  target  can  be a user-defined chain
              (other than the one this rule is in), one of the special builtin
              targets  which  decide the fate of the packet immediately, or an
              extension (see EXTENSIONS below).  If this option is omitted  in
              a rule (and -g is not used), then matching the rule will have no
              effect on the packet's fate, but the counters on the  rule  will
              be incremented.

       -g, --goto chain
              This  specifies  that  the  processing should continue in a user
              specified chain. Unlike the --jump option return will  not  con-
              tinue  processing  in  this  chain but instead in the chain that
              called us via --jump.

       [!] -i, --in-interface name
              Name of an interface via which a packet was received  (only  for
              packets  entering  the  INPUT,  FORWARD  and PREROUTING chains).
              When the "!" argument is used before  the  interface  name,  the
              sense  is  inverted.   If the interface name ends in a "+", then
              any interface which begins with this name will match.   If  this
              option is omitted, any interface name will match.

       [!] -o, --out-interface name
              Name of an interface via which a packet is going to be sent (for
              packets entering the FORWARD, OUTPUT  and  POSTROUTING  chains).
              When  the  "!"  argument  is used before the interface name, the
              sense is inverted.  If the interface name ends in  a  "+",  then
              any  interface  which begins with this name will match.  If this
              option is omitted, any interface name will match.

       [!] -f, --fragment
              This means that the rule only refers to second and further frag-
              ments  of fragmented packets.  Since there is no way to tell the
              source or destination ports of such a  packet  (or  ICMP  type),
              such a packet will not match any rules which specify them.  When
              the "!" argument precedes the "-f"  flag,  the  rule  will  only
              match head fragments, or unfragmented packets.

       -c, --set-counters packets bytes
              This enables the administrator to initialize the packet and byte
              counters of a rule (during INSERT, APPEND, REPLACE  operations).

   OTHER OPTIONS
       The following additional options can be specified:

       -v, --verbose
              Verbose  output.   This  option  makes the list command show the
              interface name, the rule options (if any), and  the  TOS  masks.
              The  packet  and  byte counters are also listed, with the suffix
              'K', 'M' or 'G' for 1000, 1,000,000 and 1,000,000,000  multipli-
              ers  respectively  (but  see  the  -x flag to change this).  For
              appending, insertion,  deletion  and  replacement,  this  causes
              detailed information on the rule or rules to be printed.

       -n, --numeric
              Numeric  output.   IP addresses and port numbers will be printed
              in numeric format.  By default, the program will try to  display
              them  as host names, network names, or services (whenever appli-
              cable).

       -x, --exact
              Expand numbers.  Display the exact value of the packet and  byte
              counters,  instead  of only the rounded number in K's (multiples
              of 1000) M's (multiples of 1000K) or G's (multiples  of  1000M).
              This option is only relevant for the -L command.

       --line-numbers
              When  listing  rules,  add line numbers to the beginning of each
              rule, corresponding to that rule's position in the chain.

       --modprobe=command
              When adding or inserting rules into a chain, use command to load
              any necessary modules (targets, match extensions, etc).

MATCH EXTENSIONS
       iptables can use extended packet matching modules.  These are loaded in
       two ways: implicitly, when -p or --protocol is specified, or  with  the
       -m  or  --match  options,  followed  by the matching module name; after
       these, various extra command line options become  available,  depending
       on  the  specific module.  You can specify multiple extended match mod-
       ules in one line, and you can use the -h or --help  options  after  the
       module has been specified to receive help specific to that module.

       The  following  are included in the base package, and most of these can
       be preceded by a "!" to invert the sense of the match.

   addrtype
       This module matches packets based on their address type.  Address types
       are  used  within  the kernel networking stack and categorize addresses
       into various groups.  The exact definition of that group depends on the
       specific layer three protocol.

       The following address types are possible:

       UNSPEC an unspecified address (i.e. 0.0.0.0)

       UNICAST
              an unicast address

       LOCAL  a local address

       BROADCAST
              a broadcast address

       ANYCAST
              an anycast packet

       MULTICAST
              a multicast address

       BLACKHOLE
              a blackhole address

       UNREACHABLE
              an unreachable address

       PROHIBIT
              a prohibited address

       THROW  FIXME

       NAT    FIXME

       XRESOLVE

       [!] --src-type type
              Matches if the source address is of given type

       [!] --dst-type type
              Matches if the destination address is of given type

       --limit-iface-in
              The  address  type  checking can be limited to the interface the
              packet is coming in. This option is only valid in  the  PREROUT-
              ING,  INPUT  and FORWARD chains. It cannot be specified with the
              --limit-iface-out option.

       --limit-iface-out
              The address type checking can be limited to  the  interface  the
              packet  is going out. This option is only valid in the POSTROUT-
              ING, OUTPUT and FORWARD chains. It cannot be specified with  the
              --limit-iface-in option.

   ah
       This module matches the SPIs in Authentication header of IPsec packets.

       [!] --ahspi spi[:spi]

   cluster
       Allows you to deploy gateway and back-end load-sharing clusters without
       the need of load-balancers.

       This  match requires that all the nodes see the same packets. Thus, the
       cluster match decides if this node has to handle  a  packet  given  the
       following options:

       --cluster-total-nodes num
              Set number of total nodes in cluster.

       [!] --cluster-local-node num
              Set the local node number ID.

       [!] --cluster-local-nodemask mask
              Set  the  local  node  number  ID  mask. You can use this option
              instead of --cluster-local-node.

       --cluster-hash-seed value
              Set seed value of the Jenkins hash.

       Example:

              iptables -A PREROUTING -t mangle  -i  eth1  -m  cluster  --clus-
              ter-total-nodes  2  --cluster-local-node  1  --cluster-hash-seed
              0xdeadbeef -j MARK --set-mark 0xffff

              iptables -A PREROUTING -t mangle  -i  eth2  -m  cluster  --clus-
              ter-total-nodes  2  --cluster-local-node  1  --cluster-hash-seed
              0xdeadbeef -j MARK --set-mark 0xffff

              iptables -A PREROUTING -t mangle -i eth1 -m mark ! --mark 0xffff
              -j DROP

              iptables -A PREROUTING -t mangle -i eth2 -m mark ! --mark 0xffff
              -j DROP

       And the following commands to make all nodes see the same packets:

              ip maddr add 01:00:5e:00:01:01 dev eth1

              ip maddr add 01:00:5e:00:01:02 dev eth2

              arptables -A OUTPUT -o eth1 --h-length 6 -j mangle --mangle-mac-
              s 01:00:5e:00:01:01

              arptables  -A  INPUT  -i  eth1  --h-length  6  --destination-mac
              01:00:5e:00:01:01 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27

              arptables -A OUTPUT  -o  eth2  --h-length  6  -j  mangle  --man-
              gle-mac-s 01:00:5e:00:01:02

              arptables  -A  INPUT  -i  eth2  --h-length  6  --destination-mac
              01:00:5e:00:01:02 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27

       In the case of TCP connections, pickup facility has to be  disabled  to
       avoid marking TCP ACK packets coming in the reply direction as valid.

              echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose

   comment
       Allows you to add comments (up to 256 characters) to any rule.

       --comment comment

       Example:
              iptables -A INPUT -i eth1 -m comment --comment "my local LAN"

   connbytes
       Match  by  how  many  bytes  or packets a connection (or one of the two
       flows constituting the connection) has transferred so far, or by  aver-
       age bytes per packet.

       The counters are 64-bit and are thus not expected to overflow ;)

       The  primary  use is to detect long-lived downloads and mark them to be
       scheduled using a lower priority band in traffic control.

       The transferred bytes per connection can also be viewed  through  `con-
       ntrack -L` and accessed via ctnetlink.

       NOTE  that  for  connections  which have no accounting information, the
       match will always return false.  The  "net.netfilter.nf_conntrack_acct"
       sysctl  flag  controls  whether  new  connections  will  be byte/packet
       counted. Existing connection flows will  not  be  gaining/losing  a/the
       accounting structure when be sysctl flag is flipped.

       [!] --connbytes from[:to]
              match  packets  from  a  connection  whose packets/bytes/average
              packet size is more than FROM and less than TO bytes/packets. if
              TO  is  omitted  only  FROM  check is done. "!" is used to match
              packets not falling in the range.

       --connbytes-dir {original|reply|both}
              which packets to consider

       --connbytes-mode {packets|bytes|avgpkt}
              whether to check the amount of packets, number of  bytes  trans-
              ferred or the average size (in bytes) of all packets received so
              far. Note that when "both" is used together with  "avgpkt",  and
              data is going (mainly) only in one direction (for example HTTP),
              the average packet size will be about half of  the  actual  data
              packets.

       Example:
              iptables    ..    -m    connbytes    --connbytes    10000:100000
              --connbytes-dir both --connbytes-mode bytes ...

   connlimit
       Allows you to restrict the number of parallel connections to  a  server
       per client IP address (or client address block).

       [!] --connlimit-above n
              Match if the number of existing connections is (not) above n.

       --connlimit-mask prefix_length
              Group  hosts  using  the prefix length. For IPv4, this must be a
              number between (including) 0 and 32. For  IPv6,  between  0  and
              128.

       Examples:

       # allow 2 telnet connections per client host
              iptables   -A  INPUT  -p  tcp  --syn  --dport  23  -m  connlimit
              --connlimit-above 2 -j REJECT

       # you can also match the other way around:
              iptables -A INPUT  -p  tcp  --syn  --dport  23  -m  connlimit  !
              --connlimit-above 2 -j ACCEPT

       #  limit  the  number of parallel HTTP requests to 16 per class C sized
       network (24 bit netmask)
              iptables  -p tcp --syn --dport 80 -m connlimit --connlimit-above
              16 --connlimit-mask 24 -j REJECT

       # limit the number of parallel HTTP requests to 16 for the  link  local
       network
              (ipv6) ip6tables  -p  tcp  --syn  --dport  80  -s  fe80::/64  -m
              connlimit --connlimit-above 16 --connlimit-mask 64 -j REJECT

   connmark
       This  module matches the netfilter mark field associated with a connec-
       tion (which can be set using the CONNMARK target below).

       [!] --mark value[/mask]
              Matches packets in connections with the given mark value  (if  a
              mask  is specified, this is logically ANDed with the mark before
              the comparison).

   conntrack
       This module, when combined with connection tracking, allows  access  to
       the connection tracking state for this packet/connection.

       [!] --ctstate statelist
              statelist  is a comma separated list of the connection states to
              match.  Possible states are listed below.

       [!] --ctproto l4proto
              Layer-4 protocol to match (by number or name)

       [!] --ctorigsrc address[/mask]

       [!] --ctorigdst address[/mask]

       [!] --ctreplsrc address[/mask]

       [!] --ctrepldst address[/mask]
              Match against original/reply source/destination address

       [!] --ctorigsrcport port

       [!] --ctorigdstport port

       [!] --ctreplsrcport port

       [!] --ctrepldstport port
              Match    against    original/reply    source/destination    port
              (TCP/UDP/etc.) or GRE key.

       [!] --ctstatus statelist
              statuslist  is a comma separated list of the connection statuses
              to match.  Possible statuses are listed below.

       [!] --ctexpire time[:time]
              Match remaining lifetime in seconds against given value or range
              of values (inclusive)

       --ctdir {ORIGINAL|REPLY}
              Match  packets  that  are flowing in the specified direction. If
              this flag is not specified  at  all,  matches  packets  in  both
              directions.

       States for --ctstate:

       INVALID
              meaning that the packet is associated with no known connection

       NEW    meaning  that the packet has started a new connection, or other-
              wise associated with a connection which has not seen packets  in
              both directions, and

       ESTABLISHED
              meaning  that  the  packet is associated with a connection which
              has seen packets in both directions,

       RELATED
              meaning that the packet is starting a  new  connection,  but  is
              associated  with  an  existing  connection,  such as an FTP data
              transfer, or an ICMP error.

       UNTRACKED
              meaning that the packet is not tracked at all, which happens  if
              you use the NOTRACK target in raw table.

       SNAT   A virtual state, matching if the original source address differs
              from the reply destination.

       DNAT   A virtual state, matching if the  original  destination  differs
              from the reply source.

       Statuses for --ctstatus:

       NONE   None of the below.

       EXPECTED
              This  is  an expected connection (i.e. a conntrack helper set it
              up)

       SEEN_REPLY
              Conntrack has seen packets in both directions.

       ASSURED
              Conntrack entry should never be early-expired.

       CONFIRMED
              Connection is confirmed: originating packet has left box.

   dccp
       [!] --source-port,--sport port[:port]

       [!] --destination-port,--dport port[:port]

       [!] --dccp-types mask
              Match when the DCCP packet type is one of 'mask'.  'mask'  is  a
              comma-separated list of packet types.  Packet types are: REQUEST
              RESPONSE DATA ACK DATAACK  CLOSEREQ  CLOSE  RESET  SYNC  SYNCACK
              INVALID.

       [!] --dccp-option number
              Match if DCP option set.

   dscp
       This module matches the 6 bit DSCP field within the TOS field in the IP
       header.  DSCP has superseded TOS within the IETF.

       [!] --dscp value
              Match against a numeric (decimal or hex) value [0-63].

       [!] --dscp-class class
              Match the DiffServ class. This value may be any of the  BE,  EF,
              AFxx or CSx classes.  It will then be converted into its accord-
              ing numeric value.

   ecn
       This allows you to match the ECN bits of the IPv4 and TCP header.   ECN
       is  the  Explicit  Congestion  Notification  mechanism  as specified in
       RFC3168

       [!] --ecn-tcp-cwr
              This matches if the TCP ECN CWR (Congestion Window Received) bit
              is set.

       [!] --ecn-tcp-ece
              This matches if the TCP ECN ECE (ECN Echo) bit is set.

       [!] --ecn-ip-ect num
              This  matches a particular IPv4 ECT (ECN-Capable Transport). You
              have to specify a number between `0' and `3'.

   esp
       This module matches the SPIs in ESP header of IPsec packets.

       [!] --espspi spi[:spi]

   hashlimit
       hashlimit uses hash buckets to express a rate limiting match (like  the
       limit  match)  for a group of connections using a single iptables rule.
       Grouping can be done per-hostgroup (source and/or destination  address)
       and/or  per-port.  It  gives  you the ability to express "N packets per
       time quantum per group":

       matching on source host
              "1000 packets per second for every host in 192.168.0.0/16"

       matching on source prot
              "100 packets per second for every service of 192.168.1.1"

       matching on subnet
              "10000 packets per minute for every /28 subnet in 10.0.0.0/8"

       A hash limit option (--hashlimit-upto, --hashlimit-above)  and  --hash-
       limit-name are required.

       --hashlimit-upto amount[/second|/minute|/hour|/day]
              Match  if  the  rate  is below or equal to amount/quantum. It is
              specified as a number, with an optional time quantum suffix; the
              default is 3/hour.

       --hashlimit-above amount[/second|/minute|/hour|/day]
              Match if the rate is above amount/quantum.

       --hashlimit-burst amount
              Maximum  initial  number  of  packets to match: this number gets
              recharged by one every time the limit  specified  above  is  not
              reached, up to this number; the default is 5.

       --hashlimit-mode {srcip|srcport|dstip|dstport},...
              A comma-separated list of objects to take into consideration. If
              no --hashlimit-mode option is given, hashlimit acts like  limit,
              but at the expensive of doing the hash housekeeping.

       --hashlimit-srcmask prefix
              When  --hashlimit-mode  srcip  is  used,  all  source  addresses
              encountered will be grouped according to the given prefix length
              and  the  so-created subnet will be subject to hashlimit. prefix
              must be between (inclusive) 0 and 32. Note that --hashlimit-src-
              mask 0 is basically doing the same thing as not specifying srcip
              for --hashlimit-mode, but is technically more expensive.

       --hashlimit-dstmask prefix
              Like --hashlimit-srcmask, but for destination addresses.

       --hashlimit-name foo
              The name for the /proc/net/ipt_hashlimit/foo entry.

       --hashlimit-htable-size buckets
              The number of buckets of the hash table

       --hashlimit-htable-max entries
              Maximum entries in the hash.

       --hashlimit-htable-expire msec
              After how many milliseconds do hash entries expire.

       --hashlimit-htable-gcinterval msec
              How many milliseconds between garbage collection intervals.

   helper
       This module matches packets related to a specific conntrack-helper.

       [!] --helper string
              Matches packets related to the specified conntrack-helper.

              string can be "ftp" for packets  related  to  a  ftp-session  on
              default  port.  For other ports append -portnr to the value, ie.
              "ftp-2121".

              Same rules apply for other conntrack-helpers.

   icmp
       This extension can be used if `--protocol icmp' is specified.  It  pro-
       vides the following option:

       [!] --icmp-type {type[/code]|typename}
              This  allows  specification  of  the  ICMP  type, which can be a
              numeric ICMP type, type/code pair, or one of the ICMP type names
              shown by the command
               iptables -p icmp -h

   iprange
       This matches on a given arbitrary range of IP addresses.

       [!] --src-range from[-to]
              Match source IP in the specified range.

       [!] --dst-range from[-to]
              Match destination IP in the specified range.

   length
       This  module  matches  the  length of the layer-3 payload (e.g. layer-4
       packet) of a packet against a specific value or range of values.

       [!] --length length[:length]

   limit
       This module matches at a limited rate using a token bucket  filter.   A
       rule  using  this  extension  will  match  until  this limit is reached
       (unless the `!' flag is used).  It can be used in combination with  the
       LOG target to give limited logging, for example.

       --limit rate[/second|/minute|/hour|/day]
              Maximum  average  matching  rate: specified as a number, with an
              optional `/second', `/minute', `/hour', or  `/day'  suffix;  the
              default is 3/hour.

       --limit-burst number
              Maximum  initial  number  of  packets to match: this number gets
              recharged by one every time the limit  specified  above  is  not
              reached, up to this number; the default is 5.

   mac
       [!] --mac-source address
              Match   source   MAC   address.    It   must   be  of  the  form
              XX:XX:XX:XX:XX:XX.  Note that this only makes sense for  packets
              coming from an Ethernet device and entering the PREROUTING, FOR-
              WARD or INPUT chains.

   mark
       This module matches the netfilter mark field associated with  a  packet
       (which can be set using the MARK target below).

       [!] --mark value[/mask]
              Matches packets with the given unsigned mark value (if a mask is
              specified, this is logically ANDed with the mask before the com-
              parison).

   multiport
       This  module  matches  a  set of source or destination ports.  Up to 15
       ports can be specified.  A port range (port:port) counts as two  ports.
       It can only be used in conjunction with -p tcp or -p udp.

       [!] --source-ports,--sports port[,port|,port:port]...
              Match  if  the  source port is one of the given ports.  The flag
              --sports is a convenient alias for this option.  Multiple  ports
              or  port ranges are separated using a comma, and a port range is
              specified using a colon.  53,1024:65535  would  therefore  match
              ports 53 and all from 1024 through 65535.

       [!] --destination-ports,--dports port[,port|,port:port]...
              Match  if  the  destination port is one of the given ports.  The
              flag --dports is a convenient alias for this option.

       [!] --ports port[,port|,port:port]...
              Match if either the source or destination ports are equal to one
              of the given ports.

   osf
       The  osf module does passive operating system fingerprinting. This mod-
       ules compares some data (Window Size, MSS,  options  and  their  order,
       TTL, DF, and others) from packets with the SYN bit set.

       [!] --genre string
              Match  an operating system genre by using a passive fingerprint-
              ing.

       --ttl level
              Do additional TTL checks on the packet to determine the  operat-
              ing system.  level can be one of the following values:

       o   0  - True IP address and fingerprint TTL comparison. This generally
           works for LANs.

       o   1 - Check if the IP header's TTL is less than the fingerprint  one.
           Works for globally-routable addresses.

       o   2 - Do not compare the TTL at all.

       --log level
           Log  determined  genres  into  dmesg  even if they do not match the
           desired one.  level can be one of the following values:

       o   0 - Log all matched or unknown signatures

       o   1 - Log only the first one

       o   2 - Log all known matched signatures

       You may find something like this in syslog:

       Windows [2000:SP3:Windows XP Pro SP1, 2000  SP3]:  11.22.33.55:4024  ->
       11.22.33.44:139  hops=3  Linux [2.5-2.6:] : 1.2.3.4:42624 -> 1.2.3.5:22
       hops=4

       OS fingerprints are loadable using the nfnl_osf program. To  load  fin-
       gerprints from a file, use:

       nfnl_osf -f /usr/share/xtables/pf.os

       To remove them again,

       nfnl_osf -f /usr/share/xtables/pf.os -d

       The     fingerprint     database     can     be     downlaoded     from
       http://www.openbsd.org/cgi-bin/cvsweb/src/etc/pf.os .

   owner
       This module attempts to match various  characteristics  of  the  packet
       creator, for locally generated packets. This match is only valid in the
       OUTPUT and POSTROUTING chains. Forwarded packets do not have any socket
       associated with them. Packets from kernel threads do have a socket, but
       usually no owner.

       [!] --uid-owner username

       [!] --uid-owner userid[-userid]
              Matches if the packet socket's file structure (if it has one) is
              owned  by  the given user. You may also specify a numerical UID,
              or an UID range.

       [!] --gid-owner groupname

       [!] --gid-owner groupid[-groupid]
              Matches if the packet socket's file structure is  owned  by  the
              given  group.   You  may  also specify a numerical GID, or a GID
              range.

       [!] --socket-exists
              Matches if the packet is associated with a socket.

   physdev
       This module matches  on  the  bridge  port  input  and  output  devices
       enslaved  to  a bridge device. This module is a part of the infrastruc-
       ture that enables a transparent bridging IP firewall and is only useful
       for kernel versions above version 2.5.44.

       [!] --physdev-in name
              Name  of  a bridge port via which a packet is received (only for
              packets entering the INPUT, FORWARD and PREROUTING  chains).  If
              the  interface  name  ends  in  a  "+", then any interface which
              begins with this name will match. If the  packet  didn't  arrive
              through  a  bridge  device, this packet won't match this option,
              unless '!' is used.

       [!] --physdev-out name
              Name of a bridge port via which a packet is  going  to  be  sent
              (for  packets  entering  the  FORWARD,  OUTPUT  and  POSTROUTING
              chains).  If the interface name ends in a "+", then  any  inter-
              face  which  begins  with this name will match. Note that in the
              nat and mangle OUTPUT chains one cannot match on the bridge out-
              put  port,  however  one  can in the filter OUTPUT chain. If the
              packet won't leave by a bridge device or if it  is  yet  unknown
              what the output device will be, then the packet won't match this
              option, unless '!' is used.

       [!] --physdev-is-in
              Matches if the packet has entered through a bridge interface.

       [!] --physdev-is-out
              Matches if the packet will leave through a bridge interface.

       [!] --physdev-is-bridged
              Matches if the packet is being  bridged  and  therefore  is  not
              being  routed.  This is only useful in the FORWARD and POSTROUT-
              ING chains.

   pkttype
       This module matches the link-layer packet type.

       [!] --pkt-type {unicast|broadcast|multicast}

   policy
       This modules matches the policy used by IPsec for handling a packet.

       --dir {in|out}
              Used to select whether to match the policy used  for  decapsula-
              tion  or  the policy that will be used for encapsulation.  in is
              valid in the PREROUTING, INPUT and FORWARD chains, out is  valid
              in the POSTROUTING, OUTPUT and FORWARD chains.

       --pol {none|ipsec}
              Matches if the packet is subject to IPsec processing.

       --strict
              Selects  whether  to match the exact policy or match if any rule
              of the policy matches the given policy.

       [!] --reqid id
              Matches the reqid of the policy rule. The reqid can be specified
              with setkey(8) using unique:id as level.

       [!] --spi spi
              Matches the SPI of the SA.

       [!] --proto {ah|esp|ipcomp}
              Matches the encapsulation protocol.

       [!] --mode {tunnel|transport}
              Matches the encapsulation mode.

       [!] --tunnel-src addr[/mask]
              Matches  the source end-point address of a tunnel mode SA.  Only
              valid with --mode tunnel.

       [!] --tunnel-dst addr[/mask]
              Matches the destination end-point address of a tunnel  mode  SA.
              Only valid with --mode tunnel.

       --next Start  the next element in the policy specification. Can only be
              used with --strict.

   quota
       Implements network quotas by decrementing  a  byte  counter  with  each
       packet.

       --quota bytes
              The quota in bytes.

   rateest
       The  rate  estimator  can  match on estimated rates as collected by the
       RATEEST target. It supports matching on absolute bps/pps  values,  com-
       paring  two  rate estimators and matching on the difference between two
       rate estimators.

       --rateest1 name
              Name of the first rate estimator.

       --rateest2 name
              Name of the second rate estimator (if difference is to be calcu-
              lated).

       --rateest-delta
              Compare difference(s) to given rate(s)

       --rateest1-bps value

       --rateest2-bps value
              Compare bytes per second.

       --rateest1-pps value

       --rateest2-pps value
              Compare packets per second.

       [!] --rateest-lt
              Match if rate is less than given rate/estimator.

       [!] --rateest-gt
              Match if rate is greater than given rate/estimator.

       [!] --rateest-eq
              Match if rate is equal to given rate/estimator.

       Example:  This  is  what can be used to route outgoing data connections
       from an FTP server over two lines based on the available  bandwidth  at
       the time the data connection was started:

       # Estimate outgoing rates

       iptables  -t  mangle  -A  POSTROUTING -o eth0 -j RATEEST --rateest-name
       eth0 --rateest-interval 250ms --rateest-ewma 0.5s

       iptables -t mangle -A POSTROUTING -o  ppp0  -j  RATEEST  --rateest-name
       ppp0 --rateest-interval 250ms --rateest-ewma 0.5s

       # Mark based on available bandwidth

       iptables  -t  mangle  -A  balance  -m conntrack --ctstate NEW -m helper
       --helper ftp -m rateest --rateest-delta --rateest1 eth0  --rateest-bps1
       2.5mbit  --rateest-gt  --rateest2 ppp0 --rateest-bps2 2mbit -j CONNMARK
       --set-mark 1

       iptables -t mangle -A balance -m  conntrack  --ctstate  NEW  -m  helper
       --helper  ftp -m rateest --rateest-delta --rateest1 ppp0 --rateest-bps1
       2mbit --rateest-gt --rateest2 eth0 --rateest-bps2 2.5mbit  -j  CONNMARK
       --set-mark 2

       iptables -t mangle -A balance -j CONNMARK --restore-mark

   realm
       This  matches  the  routing  realm.  Routing realms are used in complex
       routing setups involving dynamic routing protocols like BGP.

       [!] --realm value[/mask]
              Matches a given realm number (and optionally  mask).  If  not  a
              number,  value can be a named realm from /etc/iproute2/rt_realms
              (mask can not be used in that case).

   recent
       Allows you to dynamically create a list of IP addresses and then  match
       against that list in a few different ways.

       For example, you can create a "badguy" list out of people attempting to
       connect to port 139 on your firewall and then DROP all  future  packets
       from them without considering them.

       --set, --rcheck, --update and --remove are mutually exclusive.

       --name name
              Specify  the  list  to use for the commands. If no name is given
              then DEFAULT will be used.

       [!] --set
              This will add the source address of the packet to the  list.  If
              the  source address is already in the list, this will update the
              existing entry. This will always return success (or failure if !
              is passed in).

       --rsource
              Match/save  the source address of each packet in the recent list
              table. This is the default.

       --rdest
              Match/save the destination address of each packet in the  recent
              list table.

       [!] --rcheck
              Check  if  the  source address of the packet is currently in the
              list.

       [!] --update
              Like --rcheck, except it will update the "last  seen"  timestamp
              if it matches.

       [!] --remove
              Check  if  the  source address of the packet is currently in the
              list and if so that address will be removed from  the  list  and
              the rule will return true. If the address is not found, false is
              returned.

       --seconds seconds
              This option must be used in conjunction with one of --rcheck  or
              --update.  When  used, this will narrow the match to only happen
              when the address is in the list and was  seen  within  the  last
              given number of seconds.

       --hitcount hits
              This  option must be used in conjunction with one of --rcheck or
              --update. When used, this will narrow the match to  only  happen
              when  the  address  is in the list and packets had been received
              greater than or equal to the given value.  This  option  may  be
              used  along  with  --seconds  to  create  an even narrower match
              requiring a certain number of hits within a specific time frame.
              The  maximum  value  for  the hitcount parameter is given by the
              "ip_pkt_list_tot" parameter  of  the  xt_recent  kernel  module.
              Exceeding  this value on the command line will cause the rule to
              be rejected.

       --rttl This option may only be used in conjunction with one of --rcheck
              or  --update. When used, this will narrow the match to only hap-
              pen when the address is in the list and the TTL of  the  current
              packet matches that of the packet which hit the --set rule. This
              may be useful if you have  problems  with  people  faking  their
              source  address in order to DoS you via this module by disallow-
              ing others access to your site by sending bogus packets to  you.

       Examples:

              iptables  -A  FORWARD -m recent --name badguy --rcheck --seconds
              60 -j DROP

              iptables -A FORWARD -p tcp -i eth0 --dport 139 -m recent  --name
              badguy --set -j DROP

       Steve's  ipt_recent  website  (http://snowman.net/projects/ipt_recent/)
       also has some examples of usage.

       /proc/net/xt_recent/* are the current lists of addresses  and  informa-
       tion about each entry of each list.

       Each  file  in /proc/net/xt_recent/ can be read from to see the current
       list or written two using the following commands to modify the list:

       echo +addr >/proc/net/xt_recent/DEFAULT
              to add addr to the DEFAULT list

       echo -addr >/proc/net/xt_recent/DEFAULT
              to remove addr from the DEFAULT list

       echo / >/proc/net/xt_recent/DEFAULT
              to flush the DEFAULT list (remove all entries).

       The module itself accepts parameters, defaults shown:

       ip_list_tot=100
              Number of addresses remembered per table.

       ip_pkt_list_tot=20
              Number of packets per address remembered.

       ip_list_hash_size=0
              Hash table size. 0 means to calculate it based  on  ip_list_tot,
              default: 512.

       ip_list_perms=0644
              Permissions for /proc/net/xt_recent/* files.

       ip_list_uid=0
              Numerical UID for ownership of /proc/net/xt_recent/* files.

       ip_list_gid=0
              Numerical GID for ownership of /proc/net/xt_recent/* files.

   sctp
       [!] --source-port,--sport port[:port]

       [!] --destination-port,--dport port[:port]

       [!] --chunk-types {all|any|only} chunktype[:flags] [...]
              The  flag  letter  in  upper  case indicates that the flag is to
              match if set, in the lower case indicates to match if unset.

              Chunk types: DATA INIT  INIT_ACK  SACK  HEARTBEAT  HEARTBEAT_ACK
              ABORT   SHUTDOWN   SHUTDOWN_ACK   ERROR  COOKIE_ECHO  COOKIE_ACK
              ECN_ECNE ECN_CWR SHUTDOWN_COMPLETE ASCONF ASCONF_ACK

              chunk type            available flags
              DATA                  U B E u b e
              ABORT                 T t
              SHUTDOWN_COMPLETE     T t

              (lowercase means flag should be "off", uppercase means "on")

       Examples:

       iptables -A INPUT -p sctp --dport 80 -j DROP

       iptables -A INPUT -p sctp --chunk-types any DATA,INIT -j DROP

       iptables -A INPUT -p sctp --chunk-types any DATA:Be -j ACCEPT

   set
       This module matches IP sets which can be defined by ipset(8).

       [!] --match-set setname flag[,flag]...
              where flags are the comma separated list of src and/or dst spec-
              ifications  and there can be no more than six of them. Hence the
              command

               iptables -A FORWARD -m set --match-set test src,dst

              will match packets, for which (if the set type is ipportmap) the
              source  address  and  destination  port pair can be found in the
              specified set. If the set type of the specified  set  is  single
              dimension (for example ipmap), then the command will match pack-
              ets for which the source address can be found in  the  specified
              set.

       The  option --match-set can be replaced by --set if that does not clash
       with an option of other extensions.

       Use of -m set requires that ipset kernel support is provided. As  stan-
       dard  kernels  do  not ship this currently, the ipset or Xtables-addons
       package needs to be installed.

   socket
       This matches if an open socket can be found by doing a socket lookup on
       the packet.

   state
       This  module,  when combined with connection tracking, allows access to
       the connection tracking state for this packet.

       [!] --state state
              Where state is a comma separated list of the  connection  states
              to  match.   Possible states are INVALID meaning that the packet
              could not be identified for some reason which  includes  running
              out  of  memory  and  ICMP  errors which don't correspond to any
              known connection, ESTABLISHED meaning that the packet is associ-
              ated  with  a  connection  which has seen packets in both direc-
              tions, NEW meaning that the packet has started a new connection,
              or  otherwise  associated  with  a connection which has not seen
              packets in both directions, and RELATED meaning that the  packet
              is starting a new connection, but is associated with an existing
              connection, such as an FTP data  transfer,  or  an  ICMP  error.
              UNTRACKED  meaning  that the packet is not tracked at all, which
              happens if you use the NOTRACK target in raw table.

   statistic
       This module matches packets based on some statistic condition.  It sup-
       ports two distinct modes settable with the --mode option.

       Supported options:

       --mode mode
              Set  the matching mode of the matching rule, supported modes are
              random and nth.

       --probability p
              Set the probability from 0 to 1 for  a  packet  to  be  randomly
              matched. It works only with the random mode.

       --every n
              Match  one  packet  every nth packet. It works only with the nth
              mode (see also the --packet option).

       --packet p
              Set the initial counter value (0 <= p <= n-1, default 0) for the
              nth mode.

   string
       This  modules  matches  a  given  string by using some pattern matching
       strategy. It requires a linux kernel >= 2.6.14.

       --algo {bm|kmp}
              Select the pattern matching strategy. (bm = Boyer-Moore,  kmp  =
              Knuth-Pratt-Morris)

       --from offset
              Set the offset from which it starts looking for any matching. If
              not passed, default is 0.

       --to offset
              Set the offset from which it starts looking for any matching. If
              not passed, default is the packet size.

       [!] --string pattern
              Matches the given pattern.

       [!] --hex-string pattern
              Matches the given pattern in hex notation.

   tcp
       These  extensions can be used if `--protocol tcp' is specified. It pro-
       vides the following options:

       [!] --source-port,--sport port[:port]
              Source port or port range specification. This can  either  be  a
              service  name  or  a port number. An inclusive range can also be
              specified, using the format first:last.  If the  first  port  is
              omitted,  "0"  is  assumed;  if  the last is omitted, "65535" is
              assumed.  If the first port is greater than the second one  they
              will  be  swapped.   The  flag --sport is a convenient alias for
              this option.

       [!] --destination-port,--dport port[:port]
              Destination port or port range specification.  The flag  --dport
              is a convenient alias for this option.

       [!] --tcp-flags mask comp
              Match  when  the TCP flags are as specified.  The first argument
              mask is the flags which we should examine, written as  a  comma-
              separated  list,  and  the second argument comp is a comma-sepa-
              rated list of flags which must be set.  Flags are: SYN  ACK  FIN
              RST URG PSH ALL NONE.  Hence the command
               iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN
              will  only match packets with the SYN flag set, and the ACK, FIN
              and RST flags unset.

       [!] --syn
              Only match TCP packets with the SYN bit set and the ACK,RST  and
              FIN  bits cleared.  Such packets are used to request TCP connec-
              tion initiation; for example, blocking such packets coming in an
              interface  will  prevent  incoming TCP connections, but outgoing
              TCP  connections  will  be  unaffected.   It  is  equivalent  to
              --tcp-flags  SYN,RST,ACK,FIN  SYN.  If the "!" flag precedes the
              "--syn", the sense of the option is inverted.

       [!] --tcp-option number
              Match if TCP option set.

   tcpmss
       This matches the TCP MSS  (maximum  segment  size)  field  of  the  TCP
       header.  You can only use this on TCP SYN or SYN/ACK packets, since the
       MSS is only negotiated during the TCP handshake at  connection  startup
       time.

       [!] --mss value[:value]
              Match a given TCP MSS value or range.

   time
       This  matches  if the packet arrival time/date is within a given range.
       All options are optional, but are ANDed when specified.

       --datestart YYYY[-MM[-DD[Thh[:mm[:ss]]]]]

       --datestop YYYY[-MM[-DD[Thh[:mm[:ss]]]]]

              Only match during the given time, which must be in ISO 8601  "T"
              notation.   The  possible  time  range is 1970-01-01T00:00:00 to
              2038-01-19T04:17:07.

              If --datestart or --datestop are not specified, it will  default
              to 1970-01-01 and 2038-01-19, respectively.

       --timestart hh:mm[:ss]

       --timestop hh:mm[:ss]

              Only  match during the given daytime. The possible time range is
              00:00:00 to 23:59:59. Leading zeroes are allowed (e.g.  "06:03")
              and correctly interpreted as base-10.

       [!] --monthdays day[,day...]

              Only match on the given days of the month. Possible values are 1
              to 31. Note that specifying 31  will  of  course  not  match  on
              months  which  do  not have a 31st day; the same goes for 28- or
              29-day February.

       [!] --weekdays day[,day...]

              Only match on the given weekdays. Possible values are Mon,  Tue,
              Wed,  Thu,  Fri,  Sat, Sun, or values from 1 to 7, respectively.
              You may also use two-character variants (Mo, Tu, etc.).

       --utc

              Interpret the times given for --datestart, --datestop,  --times-
              tart and --timestop to be UTC.

       --localtz

              Interpret  the times given for --datestart, --datestop, --times-
              tart and --timestop to be local kernel time. (Default)

       EXAMPLES. To match on weekends, use:

              -m time --weekdays Sa,Su

       Or, to match (once) on a national holiday block:

              -m time --datestart 2007-12-24 --datestop 2007-12-27

       Since the stop time is actually inclusive, you would need the following
       stop time to not match the first second of the new day:

              -m      time     --datestart     2007-01-01T17:00     --datestop
              2007-01-01T23:59:59

       During lunch hour:

              -m time --timestart 12:30 --timestop 13:30

       The fourth Friday in the month:

              -m time --weekdays Fr --monthdays 22,23,24,25,26,27,28

       (Note that this exploits a certain mathematical  property.  It  is  not
       possible  to  say "fourth Thursday OR fourth Friday" in one rule. It is
       possible with multiple rules, though.)

   tos
       This module matches the 8-bit Type of Service field in the IPv4  header
       (i.e.   including  the  "Precedence" bits) or the (also 8-bit) Priority
       field in the IPv6 header.

       [!] --tos value[/mask]
              Matches packets with the given TOS mark  value.  If  a  mask  is
              specified,  it  is  logically ANDed with the TOS mark before the
              comparison.

       [!] --tos symbol
              You can specify a symbolic name when using  the  tos  match  for
              IPv4.  The list of recognized TOS names can be obtained by call-
              ing iptables with -m tos -h.  Note that this implies a  mask  of
              0x3F, i.e. all but the ECN bits.

   ttl
       This module matches the time to live field in the IP header.

       --ttl-eq ttl
              Matches the given TTL value.

       --ttl-gt ttl
              Matches if TTL is greater than the given TTL value.

       --ttl-lt ttl
              Matches if TTL is less than the given TTL value.

   u32
       U32  tests  whether quantities of up to 4 bytes extracted from a packet
       have specified values. The specification of what to extract is  general
       enough to find data at given offsets from tcp headers or payloads.

       [!] --u32 tests
              The  argument amounts to a program in a small language described
              below.

              tests := location "=" value | tests "&&" location "=" value

              value := range | value "," range

              range := number | number ":" number

       a single number, n, is interpreted the same as n:n. n:m is  interpreted
       as the range of numbers >=n and <=m.

           location := number | location operator number

           operator := "&" | "<<" | ">>" | "@"

       The  operators &, <<, >> and && mean the same as in C.  The = is really
       a set membership operator and the value syntax describes a set.  The  @
       operator is what allows moving to the next header and is described fur-
       ther below.

       There are currently some artificial implementation limits on  the  size
       of the tests:

           *  no more than 10 of "=" (and 9 "&&"s) in the u32 argument

           *  no more than 10 ranges (and 9 commas) per value

           *  no more than 10 numbers (and 9 operators) per location

       To describe the meaning of location, imagine the following machine that
       interprets it. There are three registers:

              A is of type char *, initially the address of the IP header

              B and C are unsigned 32 bit integers, initially zero

       The instructions are:

              number B = number;

              C = (*(A+B)<<24) + (*(A+B+1)<<16) + (*(A+B+2)<<8) + *(A+B+3)

              &number C = C & number

              << number C = C << number

              >> number C = C >> number

              @number A = A + C; then do the instruction number

       Any access of memory outside [skb->data,skb->end] causes the  match  to
       fail.  Otherwise the result of the computation is the final value of C.

       Whitespace is allowed but not required in the tests. However, the char-
       acters  that  do occur there are likely to require shell quoting, so it
       is a good idea to enclose the arguments in quotes.

       Example:

              match IP packets with total length >= 256

              The IP header contains a total length field in bytes 2-3.

              --u32 "0 & 0xFFFF = 0x100:0xFFFF"

              read bytes 0-3

              AND that with 0xFFFF (giving bytes 2-3), and test  whether  that
              is in the range [0x100:0xFFFF]

       Example: (more realistic, hence more complicated)

              match ICMP packets with icmp type 0

              First test that it is an ICMP packet, true iff byte 9 (protocol)
              = 1

              --u32 "6 & 0xFF = 1 && ...

              read bytes 6-9, use & to throw away bytes 6-8  and  compare  the
              result  to  1.  Next  test that it is not a fragment. (If so, it
              might be part of such a packet but we cannot always tell.) N.B.:
              This  test  is  generally  needed  if you want to match anything
              beyond the IP header. The last 6 bits of byte 6 and all of  byte
              7 are 0 iff this is a complete packet (not a fragment). Alterna-
              tively, you can allow first fragments by only testing the last 5
              bits of byte 6.

               ... 4 & 0x3FFF = 0 && ...

              Last  test:  the  first byte past the IP header (the type) is 0.
              This is where we have to use the @syntax. The length of  the  IP
              header (IHL) in 32 bit words is stored in the right half of byte
              0 of the IP header itself.

               ... 0 >> 22 & 0x3C @ 0 >> 24 = 0"

              The first 0 means read bytes 0-3, >>22 means shift that 22  bits
              to  the  right.  Shifting  24 bits would give the first byte, so
              only 22 bits is four times that plus a few more bits.  &3C  then
              eliminates  the  two  extra bits on the right and the first four
              bits of the first byte. For instance,  if  IHL=5,  then  the  IP
              header is 20 (4 x 5) bytes long. In this case, bytes 0-1 are (in
              binary)  xxxx0101  yyzzzzzz,  >>22  gives  the  10   bit   value
              xxxx0101yy and &3C gives 010100. @ means to use this number as a
              new offset into the packet, and read four  bytes  starting  from
              there.  This  is the first 4 bytes of the ICMP payload, of which
              byte 0 is the ICMP type. Therefore, we simply shift the value 24
              to the right to throw out all but the first byte and compare the
              result with 0.

       Example:

              TCP payload bytes 8-12 is any of 1, 2, 5 or 8

              First we test that the packet is a tcp packet (similar to ICMP).

              --u32 "6 & 0xFF = 6 && ...

              Next, test that it is not a fragment (same as above).

               ... 0 >> 22 & 0x3C @ 12 >> 26 & 0x3C @ 8 = 1,2,5,8"

              0>>22&3C as above computes the number of bytes in the IP header.
              @ makes this the new offset into the packet, which is the  start
              of the TCP header. The length of the TCP header (again in 32 bit
              words) is the left half of  byte  12  of  the  TCP  header.  The
              12>>26&3C  computes  this  length  in  bytes  (similar to the IP
              header before). "@" makes this the  new  offset,  which  is  the
              start  of  the  TCP  payload. Finally, 8 reads bytes 8-12 of the
              payload and = checks whether the result is any of 1, 2, 5 or  8.

   udp
       These  extensions can be used if `--protocol udp' is specified. It pro-
       vides the following options:

       [!] --source-port,--sport port[:port]
              Source port or port range specification.  See the description of
              the --source-port option of the TCP extension for details.

       [!] --destination-port,--dport port[:port]
              Destination  port or port range specification.  See the descrip-
              tion of the --destination-port option of the TCP  extension  for
              details.

TARGET EXTENSIONS
       iptables can use extended target modules: the following are included in
       the standard distribution.

   CLASSIFY
       This module allows you to set the skb->priority value (and  thus  clas-
       sify the packet into a specific CBQ class).

       --set-class major:minor
              Set  the  major  and  minor  class  value. The values are always
              interpreted as hexadecimal even if no 0x prefix is given.

   CLUSTERIP
       This module allows you to configure a  simple  cluster  of  nodes  that
       share a certain IP and MAC address without an explicit load balancer in
       front of them.  Connections  are  statically  distributed  between  the
       nodes in this cluster.

       --new  Create  a  new  ClusterIP.   You  always have to set this on the
              first rule for a given ClusterIP.

       --hashmode mode
              Specify the hashing mode.  Has to  be  one  of  sourceip,  sour-
              ceip-sourceport, sourceip-sourceport-destport.

       --clustermac mac
              Specify the ClusterIP MAC address. Has to be a link-layer multi-
              cast address

       --total-nodes num
              Number of total nodes within this cluster.

       --local-node num
              Local node number within this cluster.

       --hash-init rnd
              Specify the random seed used for hash initialization.

   CONNMARK
       This module sets the netfilter mark value associated with a connection.
       The mark is 32 bits wide.

       --set-xmark value[/mask]
              Zero out the bits given by mask and XOR value into the ctmark.

       --save-mark [--nfmask nfmask] [--ctmask ctmask]
              Copy  the  packet  mark (nfmark) to the connection mark (ctmark)
              using the given masks. The new nfmark  value  is  determined  as
              follows:

              ctmark = (ctmark & ~ctmask) ^ (nfmark & nfmask)

              i.e.  ctmask  defines what bits to clear and nfmask what bits of
              the nfmark to XOR into the ctmark. ctmask and nfmask default  to
              0xFFFFFFFF.

       --restore-mark [--nfmask nfmask] [--ctmask ctmask]
              Copy  the  connection  mark (ctmark) to the packet mark (nfmark)
              using the given masks. The new ctmark  value  is  determined  as
              follows:

              nfmark = (nfmark & ~nfmask) ^ (ctmark & ctmask);

              i.e.  nfmask  defines what bits to clear and ctmask what bits of
              the ctmark to XOR into the nfmark. ctmask and nfmask default  to
              0xFFFFFFFF.

              --restore-mark is only valid in the mangle table.

       The following mnemonics are available for --set-xmark:

       --and-mark bits
              Binary  AND  the  ctmark  with  bits.  (Mnemonic for --set-xmark
              0/invbits, where invbits is the binary negation of bits.)

       --or-mark bits
              Binary OR  the  ctmark  with  bits.  (Mnemonic  for  --set-xmark
              bits/bits.)

       --xor-mark bits
              Binary  XOR  the  ctmark  with  bits.  (Mnemonic for --set-xmark
              bits/0.)

       --set-mark value[/mask]
              Set the connection mark. If a mask is specified then only  those
              bits set in the mask are modified.

       --save-mark [--mask mask]
              Copy  the  nfmark  to  the  ctmark. If a mask is specified, only
              those bits are copied.

       --restore-mark [--mask mask]
              Copy the ctmark to the nfmark. If  a  mask  is  specified,  only
              those bits are copied. This is only valid in the mangle table.

   CONNSECMARK
       This  module  copies  security markings from packets to connections (if
       unlabeled), and from connections back to packets (also  only  if  unla-
       beled).   Typically  used in conjunction with SECMARK, it is only valid
       in the mangle table.

       --save If the packet has a security marking, copy it to the  connection
              if the connection is not marked.

       --restore
              If  the packet does not have a security marking, and the connec-
              tion does, copy the security marking from the connection to  the
              packet.

   CT
       The  CT  target allows to set parameters for a packet or its associated
       connection. The target attaches a "template" connection tracking  entry
       to the packet, which is then used by the conntrack core when initializ-
       ing a new ct entry. This target is thus only valid in the "raw"  table.

       --notrack
              Disables connection tracking for this packet.

       --helper name
              Use  the  helper  identified by name for the connection. This is
              more flexible than loading the  conntrack  helper  modules  with
              preset ports.

       --ctevents event[,...]
              Only  generate  the  specified conntrack events for this connec-
              tion. Possible event types are: new,  related,  destroy,  reply,
              assured, protoinfo, helper, mark (this refers to the ctmark, not
              nfmark), natseqinfo, secmark (ctsecmark).

       --expevents event[,...]
              Only generate the specified expectation events for this  connec-
              tion.  Possible event types are: new.

       --zone id
              Assign this packet to zone id and only have lookups done in that
              zone.  By default, packets have zone 0.

   DNAT
       This target is only valid in the nat table, in the PREROUTING and  OUT-
       PUT  chains,  and  user-defined chains which are only called from those
       chains.  It specifies that the destination address of the packet should
       be  modified  (and  all  future packets in this connection will also be
       mangled), and rules should cease being examined.  It takes one type  of
       option:

       --to-destination [ipaddr][-ipaddr][:port[-port]]
              which can specify a single new destination IP address, an inclu-
              sive range of IP addresses, and optionally, a port range  (which
              is  only valid if the rule also specifies -p tcp or -p udp).  If
              no port range is specified, then the destination port will never
              be  modified. If no IP address is specified then only the desti-
              nation port will be modified.

              In Kernels up to 2.6.10 you  can  add  several  --to-destination
              options.  For those kernels, if you specify more than one desti-
              nation  address,  either  via  an  address  range  or   multiple
              --to-destination   options,  a  simple  round-robin  (one  after
              another in cycle)  load  balancing  takes  place  between  these
              addresses.  Later Kernels (>= 2.6.11-rc1) don't have the ability
              to NAT to multiple ranges anymore.

       --random
              If option --random is used then port mapping will be  randomized
              (kernel >= 2.6.22).

       --persistent
              Gives  a  client  the  same source-/destination-address for each
              connection.  This supersedes the SAME target. Support  for  per-
              sistent mappings is available from 2.6.29-rc2.

   DSCP
       This  target  allows to alter the value of the DSCP bits within the TOS
       header of the IPv4 packet.  As this manipulates a packet, it  can  only
       be used in the mangle table.

       --set-dscp value
              Set the DSCP field to a numerical value (can be decimal or hex)

       --set-dscp-class class
              Set the DSCP field to a DiffServ class.

   ECN
       This target allows to selectively work around known ECN blackholes.  It
       can only be used in the mangle table.

       --ecn-tcp-remove
              Remove all ECN bits from the TCP header.  Of course, it can only
              be used in conjunction with -p tcp.

   LOG
       Turn  on  kernel  logging of matching packets.  When this option is set
       for a rule, the Linux kernel will print some information on all  match-
       ing  packets  (like most IP header fields) via the kernel log (where it
       can be read with dmesg or syslogd(8)).  This is a "non-terminating tar-
       get",  i.e.  rule traversal continues at the next rule.  So if you want
       to LOG the packets you refuse, use two separate  rules  with  the  same
       matching criteria, first using target LOG then DROP (or REJECT).

       --log-level level
              Level of logging (numeric or see syslog.conf(5)).

       --log-prefix prefix
              Prefix  log messages with the specified prefix; up to 29 letters
              long, and useful for distinguishing messages in the logs.

       --log-tcp-sequence
              Log TCP sequence numbers. This is a security risk if the log  is
              readable by users.

       --log-tcp-options
              Log options from the TCP packet header.

       --log-ip-options
              Log options from the IP packet header.

       --log-uid
              Log the userid of the process which generated the packet.

   MARK
       This target is used to set the Netfilter mark value associated with the
       packet.  It can, for example, be used in conjunction with routing based
       on fwmark (needs iproute2). If you plan on doing so, note that the mark
       needs to be set in the PREROUTING chain of the mangle table  to  affect
       routing.  The mark field is 32 bits wide.

       --set-xmark value[/mask]
              Zeroes out the bits given by mask and XORs value into the packet
              mark ("nfmark"). If mask is omitted, 0xFFFFFFFF is assumed.

       --set-mark value[/mask]
              Zeroes out the bits given by mask and ORs value into the  packet
              mark. If mask is omitted, 0xFFFFFFFF is assumed.

       The following mnemonics are available:

       --and-mark bits
              Binary  AND  the  nfmark  with  bits.  (Mnemonic for --set-xmark
              0/invbits, where invbits is the binary negation of bits.)

       --or-mark bits
              Binary OR  the  nfmark  with  bits.  (Mnemonic  for  --set-xmark
              bits/bits.)

       --xor-mark bits
              Binary  XOR  the  nfmark  with  bits.  (Mnemonic for --set-xmark
              bits/0.)

   MASQUERADE
       This target is only valid in the nat table, in the  POSTROUTING  chain.
       It  should  only  be used with dynamically assigned IP (dialup) connec-
       tions: if you have a static IP address, you should use the SNAT target.
       Masquerading is equivalent to specifying a mapping to the IP address of
       the interface the packet is going out, but also  has  the  effect  that
       connections  are  forgotten  when the interface goes down.  This is the
       correct behavior when the next dialup is  unlikely  to  have  the  same
       interface  address (and hence any established connections are lost any-
       way).  It takes one option:

       --to-ports port[-port]
              This specifies a range of source ports to  use,  overriding  the
              default SNAT source port-selection heuristics (see above).  This
              is only valid if the rule also specifies -p tcp or -p udp.

       --random
              Randomize source port mapping If option --random  is  used  then
              port mapping will be randomized (kernel >= 2.6.21).

   MIRROR
       This  is  an experimental demonstration target which inverts the source
       and destination fields in the IP header and retransmits the packet.  It
       is  only  valid  in the INPUT, FORWARD and PREROUTING chains, and user-
       defined chains which are only called from those chains.  Note that  the
       outgoing  packets  are NOT seen by any packet filtering chains, connec-
       tion tracking or NAT, to avoid loops and other problems.

   NETMAP
       This target allows you to statically map a whole network  of  addresses
       onto  another  network of addresses.  It can only be used from rules in
       the nat table.

       --to address[/mask]
              Network address to map to.  The resulting address will  be  con-
              structed  in  the  following way: All 'one' bits in the mask are
              filled in from the new `address'.  All bits that are zero in the
              mask are filled in from the original address.

   NFLOG
       This  target  provides logging of matching packets. When this target is
       set for a rule, the Linux kernel will pass the  packet  to  the  loaded
       logging  backend to log the packet. This is usually used in combination
       with nfnetlink_log as logging backend, which will multicast the  packet
       through  a netlink socket to the specified multicast group. One or more
       userspace processes may subscribe to the group to receive the  packets.
       Like LOG, this is a non-terminating target, i.e. rule traversal contin-
       ues at the next rule.

       --nflog-group nlgroup
              The netlink group (1 - 2^32-1) to which packets are (only appli-
              cable for nfnetlink_log). The default value is 0.

       --nflog-prefix prefix
              A  prefix string to include in the log message, up to 64 charac-
              ters long, useful for distinguishing messages in the logs.

       --nflog-range size
              The number of bytes to be copied to userspace  (only  applicable
              for  nfnetlink_log).  nfnetlink_log  instances may specify their
              own range, this option overrides it.

       --nflog-threshold size
              Number of packets to queue inside the kernel before sending them
              to  userspace (only applicable for nfnetlink_log). Higher values
              result in less overhead per packet, but increase delay until the
              packets reach userspace. The default value is 1.

   NFQUEUE
       This  target  is an extension of the QUEUE target. As opposed to QUEUE,
       it allows you to put a packet into any specific  queue,  identified  by
       its  16-bit  queue  number.   It  can only be used with Kernel versions
       2.6.14 or later, since it requires the nfnetlink_queue kernel  support.
       The queue-balance option was added in Linux 2.6.31.

       --queue-num value
              This  specifies the QUEUE number to use. Valid queue numbers are
              0 to 65535. The default value is 0.

       --queue-balance value:value
              This specifies a range of queues to use. Packets are  then  bal-
              anced  across  the  given  queues.  This is useful for multicore
              systems: start multiple instances of the  userspace  program  on
              queues  x, x+1, .. x+n and use "--queue-balance x:x+n".  Packets
              belonging to the same connection are put into the same  nfqueue.

   NOTRACK
       This  target disables connection tracking for all packets matching that
       rule.

       It can only be used in the raw table.

   RATEEST
       The RATEEST target collects statistics, performs rate estimation calcu-
       lation  and  saves  the  results for later evaluation using the rateest
       match.

       --rateest-name name
              Count matched packets into the pool referred to by  name,  which
              is freely choosable.

       --rateest-interval amount{s|ms|us}
              Rate measurement interval, in seconds, milliseconds or microsec-
              onds.

       --rateest-ewmalog value
              Rate measurement averaging time constant.

   REDIRECT
       This target is only valid in the nat table, in the PREROUTING and  OUT-
       PUT  chains,  and  user-defined chains which are only called from those
       chains.  It redirects the packet to the machine itself by changing  the
       destination  IP  to  the  primary  address  of  the  incoming interface
       (locally-generated packets are mapped to the 127.0.0.1 address).

       --to-ports port[-port]
              This specifies a destination port or  range  of  ports  to  use:
              without  this,  the  destination port is never altered.  This is
              only valid if the rule also specifies -p tcp or -p udp.

       --random
              If option --random is used then port mapping will be  randomized
              (kernel >= 2.6.22).

   REJECT
       This  is  used  to send back an error packet in response to the matched
       packet: otherwise it is equivalent to DROP so it is a terminating  TAR-
       GET,  ending  rule  traversal.  This target is only valid in the INPUT,
       FORWARD and OUTPUT chains,  and  user-defined  chains  which  are  only
       called  from those chains.  The following option controls the nature of
       the error packet returned:

       --reject-with type
              The type given can be  icmp-net-unreachable,  icmp-host-unreach-
              able,       icmp-port-unreachable,       icmp-proto-unreachable,
              icmp-net-prohibited, icmp-host-prohibited or  icmp-admin-prohib-
              ited  (*)  which  return  the  appropriate  ICMP  error  message
              (port-unreachable is the default).  The option tcp-reset can  be
              used  on  rules which only match the TCP protocol: this causes a
              TCP RST packet to be sent  back.   This  is  mainly  useful  for
              blocking  ident  (113/tcp)  probes  which  frequently occur when
              sending mail to broken mail hosts (which won't accept your  mail
              otherwise).

       (*)  Using  icmp-admin-prohibited  with  kernels that do not support it
       will result in a plain DROP instead of REJECT

   SAME
       Similar to SNAT/DNAT depending on chain: it takes a range of  addresses
       (`--to  1.2.3.4-1.2.3.7')  and gives a client the same source-/destina-
       tion-address for each connection.

       N.B.: The DNAT target's --persistent option replaced the SAME target.

       --to ipaddr[-ipaddr]
              Addresses to map source to. May be specified more than once  for
              multiple ranges.

       --nodst
              Don't  use the destination-ip in the calculations when selecting
              the new source-ip

       --random
              Port mapping will be forcibly randomized to avoid attacks  based
              on port prediction (kernel >= 2.6.21).

   SECMARK
       This  is used to set the security mark value associated with the packet
       for use by security subsystems such as SELinux.  It is  only  valid  in
       the mangle table. The mark is 32 bits wide.

       --selctx security_context

   SET
       This  modules  adds  and/or  deletes  entries from IP sets which can be
       defined by ipset(8).

       --add-set setname flag[,flag...]
              add the address(es)/port(s) of the packet to the sets

       --del-set setname flag[,flag...]
              delete the address(es)/port(s) of the packet from the sets

              where flags are src and/or dst specifications and there  can  be
              no more than six of them.

       Use  of -j SET requires that ipset kernel support is provided. As stan-
       dard kernels do not ship this currently, the  ipset  or  Xtables-addons
       package needs to be installed.

   SNAT
       This  target  is only valid in the nat table, in the POSTROUTING chain.
       It specifies that the source address of the packet should  be  modified
       (and  all  future packets in this connection will also be mangled), and
       rules should cease being examined.  It takes one type of option:

       --to-source ipaddr[-ipaddr][:port[-port]]
              which can specify a single new source IP address,  an  inclusive
              range  of  IP  addresses, and optionally, a port range (which is
              only valid if the rule also specifies -p tcp or -p udp).  If  no
              port  range  is  specified,  then source ports below 512 will be
              mapped to other ports below 512:  those  between  512  and  1023
              inclusive  will  be  mapped to ports below 1024, and other ports
              will be mapped to 1024 or above. Where possible, no port  alter-
              ation will

              In  Kernels  up  to  2.6.10,  you  can  add  several --to-source
              options. For those kernels, if you specify more than one  source
              address,  either  via  an  address range or multiple --to-source
              options, a simple round-robin (one after another in cycle) takes
              place  between  these  addresses.  Later Kernels (>= 2.6.11-rc1)
              don't have the ability to NAT to multiple ranges anymore.

       --random
              If option --random is used then port mapping will be  randomized
              (kernel >= 2.6.21).

       --persistent
              Gives  a  client  the  same source-/destination-address for each
              connection.  This supersedes the SAME target. Support  for  per-
              sistent mappings is available from 2.6.29-rc2.

   TCPMSS
       This  target  allows to alter the MSS value of TCP SYN packets, to con-
       trol the maximum size for that connection (usually limiting it to  your
       outgoing  interface's  MTU  minus  40  for IPv4 or 60 for IPv6, respec-
       tively).  Of course, it can only be used in conjunction with -p tcp.

       This target is used to overcome criminally braindead  ISPs  or  servers
       which  block  "ICMP  Fragmentation  Needed"  or "ICMPv6 Packet Too Big"
       packets.  The symptoms of this problem are that everything  works  fine
       from  your  Linux  firewall/router,  but  machines  behind it can never
       exchange large packets:
        1) Web browsers connect, then hang with no data received.
        2) Small mail works fine, but large emails hang.
        3) ssh works fine, but scp hangs after initial handshaking.
       Workaround: activate this option and add a rule to your  firewall  con-
       figuration like:

               iptables -t mangle -A FORWARD -p tcp --tcp-flags SYN,RST SYN
                           -j TCPMSS --clamp-mss-to-pmtu

       --set-mss value
              Explicitly sets MSS option to specified value. If the MSS of the
              packet is already lower than value, it  will  not  be  increased
              (from  Linux  2.6.25  onwards) to avoid more problems with hosts
              relying on a proper MSS.

       --clamp-mss-to-pmtu
              Automatically clamp MSS value to (path_MTU - 40  for  IPv4;  -60
              for  IPv6).   This  may not function as desired where asymmetric
              routes with differing path MTU exist -- the kernel uses the path
              MTU which it would use to send packets from itself to the source
              and destination IP addresses. Prior to Linux  2.6.25,  only  the
              path  MTU  to  the destination IP address was considered by this
              option; subsequent kernels also consider the  path  MTU  to  the
              source IP address.

       These options are mutually exclusive.

   TCPOPTSTRIP
       This  target will strip TCP options off a TCP packet. (It will actually
       replace them by NO-OPs.) As such, you will  need  to  add  the  -p  tcp
       parameters.

       --strip-options option[,option...]
              Strip  the  given option(s). The options may be specified by TCP
              option number or  by  symbolic  name.  The  list  of  recognized
              options  can be obtained by calling iptables with -j TCPOPTSTRIP
              -h.

   TOS
       This module sets the Type of Service field in the IPv4 header  (includ-
       ing  the  "precedence"  bits) or the Priority field in the IPv6 header.
       Note that TOS shares the same bits as DSCP and ECN. The TOS  target  is
       only valid in the mangle table.

       --set-tos value[/mask]
              Zeroes  out  the  bits  given  by  mask  and XORs value into the
              TOS/Priority field. If mask is omitted, 0xFF is assumed.

       --set-tos symbol
              You can specify a symbolic name when using the  TOS  target  for
              IPv4.  It  implies  a  mask  of 0xFF. The list of recognized TOS
              names can be obtained by calling iptables with -j TOS -h.

       The following mnemonics are available:

       --and-tos bits
              Binary AND the TOS value  with  bits.  (Mnemonic  for  --set-tos
              0/invbits, where invbits is the binary negation of bits.)

       --or-tos bits
              Binary  OR  the  TOS  value  with  bits. (Mnemonic for --set-tos
              bits/bits.)

       --xor-tos bits
              Binary XOR the TOS value  with  bits.  (Mnemonic  for  --set-tos
              bits/0.)

   TPROXY
       This  target is only valid in the mangle table, in the PREROUTING chain
       and user-defined chains which are  only  called  from  this  chain.  It
       redirects  the  packet  to  a  local socket without changing the packet
       header in any way. It can also change the mark value which can then  be
       used in advanced routing rules.  It takes three options:

       --on-port port
              This  specifies  a  destination  port  to  use. It is a required
              option, 0 means the new destination port  is  the  same  as  the
              original.  This  is only valid if the rule also specifies -p tcp
              or -p udp.

       --on-ip address
              This specifies a destination address  to  use.  By  default  the
              address  is  the  IP  address of the incoming interface. This is
              only valid if the rule also specifies -p tcp or -p udp.

       --tproxy-mark value[/mask]
              Marks packets with the given value/mask. The  fwmark  value  set
              here  can be used by advanced routing. (Required for transparent
              proxying to work: otherwise these packets  will  get  forwarded,
              which is probably not what you want.)

   TRACE
       This  target  marks packes so that the kernel will log every rule which
       match the packets as those traverse the  tables,  chains,  rules.  (The
       ipt_LOG  or  ip6t_LOG  module is required for the logging.) The packets
       are  logged  with   the   string   prefix:   "TRACE:   tablename:chain-
       name:type:rulenum  "  where type can be "rule" for plain rule, "return"
       for implicit rule at the end of a user defined chain and  "policy"  for
       the policy of the built in chains.
       It can only be used in the raw table.

   TTL
       This is used to modify the IPv4 TTL header field.  The TTL field deter-
       mines how many hops (routers) a packet can traverse until it's time  to
       live is exceeded.

       Setting  or  incrementing the TTL field can potentially be very danger-
       ous, so it should be avoided at any cost.

       Don't ever set or increment the value on packets that leave your  local
       network!  mangle table.

       --ttl-set value
              Set the TTL value to `value'.

       --ttl-dec value
              Decrement the TTL value `value' times.

       --ttl-inc value
              Increment the TTL value `value' times.

   ULOG
       This  target provides userspace logging of matching packets.  When this
       target is set for a rule, the Linux kernel will multicast  this  packet
       through a netlink socket. One or more userspace processes may then sub-
       scribe to various multicast groups and receive the packets.  Like  LOG,
       this  is  a  "non-terminating target", i.e. rule traversal continues at
       the next rule.

       --ulog-nlgroup nlgroup
              This specifies the netlink group (1-32) to which the  packet  is
              sent.  Default value is 1.

       --ulog-prefix prefix
              Prefix  log messages with the specified prefix; up to 32 charac-
              ters long, and useful for distinguishing messages in the logs.

       --ulog-cprange size
              Number of bytes to be copied to userspace.  A value of 0  always
              copies the entire packet, regardless of its size.  Default is 0.

       --ulog-qthreshold size
              Number of packet to queue inside kernel.  Setting this value to,
              e.g.  10 accumulates ten packets inside the kernel and transmits
              them as one netlink multipart message to userspace.  Default  is
              1 (for backwards compatibility).

DIAGNOSTICS
       Various error messages are printed to standard error.  The exit code is
       0 for correct functioning.  Errors which appear to be caused by invalid
       or  abused  command  line parameters cause an exit code of 2, and other
       errors cause an exit code of 1.

BUGS
       Bugs?  What's this? ;-)  Well,  you  might  want  to  have  a  look  at
       http://bugzilla.netfilter.org/

COMPATIBILITY WITH IPCHAINS
       This  iptables  is very similar to ipchains by Rusty Russell.  The main
       difference is that the chains INPUT and OUTPUT are only  traversed  for
       packets  coming into the local host and originating from the local host
       respectively.  Hence every packet only passes through one of the  three
       chains  (except  loopback traffic, which involves both INPUT and OUTPUT
       chains); previously a forwarded packet would pass through all three.

       The other main difference is that -i refers to the input interface;  -o
       refers  to  the  output  interface,  and both are available for packets
       entering the FORWARD chain.

       The various forms of NAT have been separated out; iptables  is  a  pure
       packet  filter  when  using  the  default `filter' table, with optional
       extension modules.  This should simplify much of the previous confusion
       over  the combination of IP masquerading and packet filtering seen pre-
       viously.  So the following options are handled differently:
        -j MASQ
        -M -S
        -M -L
       There are several other changes in iptables.

SEE ALSO
       iptables-save(8), iptables-restore(8), ip6tables(8), ip6tables-save(8),
       ip6tables-restore(8), libipq(3).

       The packet-filtering-HOWTO details iptables usage for packet filtering,
       the NAT-HOWTO details NAT, the netfilter-extensions-HOWTO  details  the
       extensions  that  are not in the standard distribution, and the netfil-
       ter-hacking-HOWTO details the netfilter internals.
       See http://www.netfilter.org/.

AUTHORS
       Rusty Russell originally wrote iptables,  in  early  consultation  with
       Michael Neuling.

       Marc  Boucher  made  Rusty  abandon  ipnatctl by lobbying for a generic
       packet selection framework in iptables, then wrote  the  mangle  table,
       the owner match, the mark stuff, and ran around doing cool stuff every-
       where.

       James Morris wrote the TOS target, and tos match.

       Jozsef Kadlecsik wrote the REJECT target.

       Harald Welte wrote the ULOG and NFQUEUE target,  the  new  libiptc,  as
       well as the TTL, DSCP, ECN matches and targets.

       The  Netfilter  Core  Team is: Marc Boucher, Martin Josefsson, Yasuyuki
       Kozakai, Jozsef Kadlecsik, Patrick McHardy, James Morris,  Pablo  Neira
       Ayuso, Harald Welte and Rusty Russell.

       Man page originally written by Herve Eychenne <rv@wallfire.org>.

iptables 1.4.8                                                     IPTABLES(8)
 

Scannen Sie den Barcode um die Webseite zu öffnen


Quelle: http://www.trinler.net/de/service/doc/linux/man.html?command=iptables
Gedruckt am: 16.12.2017 04:24 GMT+0100 (2017-12-16T04:24:20+01:00)