UNIX ON-LINE Man Pages - Die Onlinehilfe

Die Syntax von Unixbefehlen wird in den entsprechenden Manpages dokumentiert. Hier können Sie diese Onlinehilfe für viele Standardbefehle abrufen.

Suchoptionen:
Seiten auflisten, welche beginnen mit:
A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z   ALPHA   NUM   ANDERE   ALLE
IP6TABLES(8)                    iptables 1.4.4                    IP6TABLES(8)

NAME
       ip6tables -- IPv6 packet filter administration

SYNOPSIS
       ip6tables [-t table] {-A|-D} chain rule-specification [options...]

       ip6tables [-t table] -I chain [rulenum] rule-specification [options...]

       ip6tables [-t table] -R chain rulenum rule-specification [options...]

       ip6tables [-t table] -D chain rulenum [options...]

       ip6tables [-t table] -S [chain [rulenum]]

       ip6tables [-t table] {-F|-L|-Z} [chain [rulenum]] [options...]

       ip6tables [-t table] -N chain

       ip6tables [-t table] -X [chain]

       ip6tables [-t table] -P chain target [options...]

       ip6tables [-t table] -E old-chain-name new-chain-name

DESCRIPTION
       Ip6tables is used to set up, maintain, and inspect the tables  of  IPv6
       packet  filter rules in the Linux kernel.  Several different tables may
       be defined.  Each table contains a number of built-in  chains  and  may
       also contain user-defined chains.

       Each  chain  is a list of rules which can match a set of packets.  Each
       rule specifies what to do with a packet that matches.  This is called a
       `target',  which  may be a jump to a user-defined chain in the same ta-
       ble.

TARGETS
       A firewall rule specifies criteria for a packet and a target.   If  the
       packet  does  not match, the next rule in the chain is the examined; if
       it does match, then the next rule is specified by the value of the tar-
       get,  which  can be the name of a user-defined chain or one of the spe-
       cial values ACCEPT, DROP, QUEUE or RETURN.

       ACCEPT means to let the packet through.  DROP means to drop the  packet
       on  the  floor.  QUEUE means to pass the packet to userspace.  (How the
       packet can be received by a userspace process differs by the particular
       queue  handler.   2.4.x  and  2.6.x  kernels  up  to 2.6.13 include the
       ip_queue queue handler.  Kernels 2.6.14 and later additionally  include
       the nfnetlink_queue queue handler.  Packets with a target of QUEUE will
       be sent to queue number '0' in this case. Please also see  the  NFQUEUE
       target  as  described  later  in  this  man  page.)   RETURN means stop
       traversing this chain and resume at  the  next  rule  in  the  previous
       (calling)  chain.   If the end of a built-in chain is reached or a rule
       in a built-in chain with target RETURN is matched, the target specified
       by the chain policy determines the fate of the packet.

TABLES
       There  are currently three independent tables (which tables are present
       at any time depends on the kernel configuration options and which  mod-
       ules are present).

       -t, --table table
              This  option  specifies the packet matching table which the com-
              mand should operate  on.   If  the  kernel  is  configured  with
              automatic  module  loading,  an attempt will be made to load the
              appropriate module for that table if it is not already there.

              The tables are as follows:

              filter:
                  This is the default table (if no -t option  is  passed).  It
                  contains  the built-in chains INPUT (for packets destined to
                  local sockets), FORWARD (for packets  being  routed  through
                  the box), and OUTPUT (for locally-generated packets).

              mangle:
                  This table is used for specialized packet alteration.  Until
                  kernel 2.4.17 it had two built-in  chains:  PREROUTING  (for
                  altering  incoming  packets  before routing) and OUTPUT (for
                  altering locally-generated packets before  routing).   Since
                  kernel  2.4.18,  three  other  built-in chains are also sup-
                  ported: INPUT (for packets coming into the box itself), FOR-
                  WARD  (for  altering  packets being routed through the box),
                  and POSTROUTING (for altering packets as they are  about  to
                  go out).

              raw:
                  This  table  is  used mainly for configuring exemptions from
                  connection tracking in combination with the NOTRACK  target.
                  It registers at the netfilter hooks with higher priority and
                  is thus called before ip_conntrack, or any other IP  tables.
                  It  provides  the following built-in chains: PREROUTING (for
                  packets arriving via  any  network  interface)  OUTPUT  (for
                  packets generated by local processes)

OPTIONS
       The  options  that are recognized by ip6tables can be divided into sev-
       eral different groups.

   COMMANDS
       These options specify the specific action to perform.  Only one of them
       can  be specified on the command line unless otherwise specified below.
       For all the long versions of the command and option names, you need  to
       use  only  enough letters to ensure that ip6tables can differentiate it
       from all other options.

       -A, --append chain rule-specification
              Append one or more rules to the end of the selected chain.  When
              the  source  and/or  destination  names resolve to more than one
              address, a rule will be added for each possible address combina-
              tion.

       -D, --delete chain rule-specification
       -D, --delete chain rulenum
              Delete one or more rules from the selected chain.  There are two
              versions of this command: the rule can be specified as a  number
              in  the  chain  (starting  at 1 for the first rule) or a rule to
              match.

       -I, --insert chain [rulenum] rule-specification
              Insert one or more rules in the selected chain as the given rule
              number.   So,  if  the  rule  number is 1, the rule or rules are
              inserted at the head of the chain.  This is also the default  if
              no rule number is specified.

       -R, --replace chain rulenum rule-specification
              Replace a rule in the selected chain.  If the source and/or des-
              tination names resolve to multiple addresses, the  command  will
              fail.  Rules are numbered starting at 1.

       -L, --list [chain]
              List  all rules in the selected chain.  If no chain is selected,
              all chains are listed. Like every other  ip6tables  command,  it
              applies to the specified table (filter is the default).

              Please  note  that it is often used with the -n option, in order
              to avoid long reverse DNS lookups.  It is legal to  specify  the
              -Z  (zero)  option  as  well, in which case the chain(s) will be
              atomically listed and zeroed.  The exact output is  affected  by
              the  other arguments given. The exact rules are suppressed until
              you use
               ip6tables -L -v

       -S, --list-rules [chain]
              Print all rules in the selected chain.  If no chain is selected,
              all  chains  are  printed  like ip6tables-save. Like every other
              ip6tables command, it applies to the specified table (filter  is
              the default).

       -F, --flush [chain]
              Flush the selected chain (all the chains in the table if none is
              given).  This is equivalent to deleting all  the  rules  one  by
              one.

       -Z, --zero [chain [rulenum]]
              Zero  the  packet  and  byte counters in all chains, or only the
              given chain, or only the given rule in a chain. It is  legal  to
              specify  the  -L, --list (list) option as well, to see the coun-
              ters immediately before they are cleared. (See above.)

       -N, --new-chain chain
              Create a new user-defined chain by the given name.   There  must
              be no target of that name already.

       -X, --delete-chain [chain]
              Delete the optional user-defined chain specified.  There must be
              no references to the chain.  If there are, you  must  delete  or
              replace  the  referring  rules  before the chain can be deleted.
              The chain must be empty, i.e. not  contain  any  rules.   If  no
              argument  is  given, it will attempt to delete every non-builtin
              chain in the table.

       -P, --policy chain target
              Set the policy for the chain to the given target.  See the  sec-
              tion  TARGETS  for  the legal targets.  Only built-in (non-user-
              defined) chains can have  policies,  and  neither  built-in  nor
              user-defined chains can be policy targets.

       -E, --rename-chain old-chain new-chain
              Rename the user specified chain to the user supplied name.  This
              is cosmetic, and has no effect on the structure of the table.

       -A, --append chain rule-specification
              Append one or more rules to the end of the selected chain.  When
              the  source  and/or  destination  names resolve to more than one
              address, a rule will be added for each possible address combina-
              tion.

       -h     Help.   Give a (currently very brief) description of the command
              syntax.

   PARAMETERS
       The following parameters make up a rule specification (as used  in  the
       add, delete, insert, replace and append commands).

       [!] -p, --protocol protocol
              The  protocol of the rule or of the packet to check.  The speci-
              fied protocol can be one of tcp, udp, udplite, icmpv6,  esp,  mh
              or  all, or it can be a numeric value, representing one of these
              protocols or a different one. A protocol name  from  /etc/proto-
              cols is also allowed.  But IPv6 extension headers except esp are
              not allowed.  esp  and  ipv6-nonext  can  be  used  with  Kernel
              version  2.6.11  or  later.   A "!" argument before the protocol
              inverts the test.  The number zero is equivalent to all.  Proto-
              col  all  will  match with all protocols and is taken as default
              when this option is omitted.

       [!] -s, --source address[/mask]
              Source specification.  Address can be either be  a  hostname,  a
              network  IP  address (with /mask), or a plain IP address.  Names
              will be resolved once only, before the rule is submitted to  the
              kernel.   Please  note  that  specifying any name to be resolved
              with a remote query such as DNS is a really bad idea.   (Resolv-
              ing network names is not supported at this time.)  The mask is a
              plain number, specifying the number of 1's at the left  side  of
              the  network mask.  A "!" argument before the address specifica-
              tion inverts the sense of the address.  The  flag  --src  is  an
              alias for this option.  Multiple addresses can be specified, but
              this will expand to multiple rules (when  adding  with  -A),  or
              will cause multiple rules to be deleted (with -D).

       [!] -d, --destination address[/mask]
              Destination  specification.   See  the  description  of  the  -s
              (source) flag for a detailed description  of  the  syntax.   The
              flag --dst is an alias for this option.

       -j, --jump target
              This  specifies  the target of the rule; i.e., what to do if the
              packet matches it.  The  target  can  be  a  user-defined  chain
              (other than the one this rule is in), one of the special builtin
              targets which decide the fate of the packet immediately,  or  an
              extension  (see EXTENSIONS below).  If this option is omitted in
              a rule (and -g is not used), then matching the rule will have no
              effect  on  the packet's fate, but the counters on the rule will
              be incremented.

       -g, --goto chain
              This specifies that the processing should  continue  in  a  user
              specified  chain.  Unlike the --jump option return will not con-
              tinue processing in this chain but instead  in  the  chain  that
              called us via --jump.

       [!] -i, --in-interface name
              Name  of  an interface via which a packet was received (only for
              packets entering the  INPUT,  FORWARD  and  PREROUTING  chains).
              When  the  "!"  argument  is used before the interface name, the
              sense is inverted.  If the interface name ends in  a  "+",  then
              any  interface  which begins with this name will match.  If this
              option is omitted, any interface name will match.

       [!] -o, --out-interface name
              Name of an interface via which a packet is going to be sent (for
              packets  entering  the  FORWARD, OUTPUT and POSTROUTING chains).
              When the "!" argument is used before  the  interface  name,  the
              sense  is  inverted.   If the interface name ends in a "+", then
              any interface which begins with this name will match.   If  this
              option is omitted, any interface name will match.

       -c, --set-counters packets bytes
              This enables the administrator to initialize the packet and byte
              counters of a rule (during INSERT, APPEND, REPLACE  operations).

   OTHER OPTIONS
       The following additional options can be specified:

       -v, --verbose
              Verbose  output.   This  option  makes the list command show the
              interface name, the rule options (if any), and  the  TOS  masks.
              The  packet  and  byte counters are also listed, with the suffix
              'K', 'M' or 'G' for 1000, 1,000,000 and 1,000,000,000  multipli-
              ers  respectively  (but  see  the  -x flag to change this).  For
              appending, insertion,  deletion  and  replacement,  this  causes
              detailed information on the rule or rules to be printed.

       -n, --numeric
              Numeric  output.   IP addresses and port numbers will be printed
              in numeric format.  By default, the program will try to  display
              them  as host names, network names, or services (whenever appli-
              cable).

       -x, --exact
              Expand numbers.  Display the exact value of the packet and  byte
              counters,  instead  of only the rounded number in K's (multiples
              of 1000) M's (multiples of 1000K) or G's (multiples  of  1000M).
              This option is only relevant for the -L command.

       --line-numbers
              When  listing  rules,  add line numbers to the beginning of each
              rule, corresponding to that rule's position in the chain.

       --modprobe=command
              When adding or inserting rules into a chain, use command to load
              any necessary modules (targets, match extensions, etc).

MATCH EXTENSIONS
       ip6tables  can  use extended packet matching modules.  These are loaded
       in two ways: implicitly, when -p or --protocol is  specified,  or  with
       the  -m or --match options, followed by the matching module name; after
       these, various extra command line options become  available,  depending
       on  the  specific module.  You can specify multiple extended match mod-
       ules in one line, and you can use the -h or --help  options  after  the
       module has been specified to receive help specific to that module.

       The  following  are included in the base package, and most of these can
       be preceded by a "!" to invert the sense of the match.

   ah
       This module matches the parameters in Authentication  header  of  IPsec
       packets.

       [!] --ahspi spi[:spi]
              Matches SPI.

       [!] --ahlen length
              Total length of this header in octets.

       --ahres
              Matches if the reserved field is filled with zero.

   cluster
       Allows you to deploy gateway and back-end load-sharing clusters without
       the need of load-balancers.

       This match requires that all the nodes see the same packets. Thus,  the
       cluster  match  decides  if  this node has to handle a packet given the
       following options:

       --cluster-total-nodes num
              Set number of total nodes in cluster.

       [!] --cluster-local-node num
              Set the local node number ID.

       [!] --cluster-local-nodemask mask
              Set the local node number ID  mask.  You  can  use  this  option
              instead of --cluster-local-node.

       --cluster-hash-seed value
              Set seed value of the Jenkins hash.

       Example:

              iptables  -A  PREROUTING  -t  mangle  -i eth1 -m cluster --clus-
              ter-total-nodes  2  --cluster-local-node  1  --cluster-hash-seed
              0xdeadbeef -j MARK --set-mark 0xffff

              iptables  -A  PREROUTING  -t  mangle  -i eth2 -m cluster --clus-
              ter-total-nodes  2  --cluster-local-node  1  --cluster-hash-seed
              0xdeadbeef -j MARK --set-mark 0xffff

              iptables -A PREROUTING -t mangle -i eth1 -m mark ! --mark 0xffff
              -j DROP

              iptables -A PREROUTING -t mangle -i eth2 -m mark ! --mark 0xffff
              -j DROP

       And the following commands to make all nodes see the same packets:

              ip maddr add 01:00:5e:00:01:01 dev eth1

              ip maddr add 01:00:5e:00:01:02 dev eth2

              arptables -A OUTPUT -o eth1 --h-length 6 -j mangle --mangle-mac-
              s 01:00:5e:00:01:01

              arptables  -A  INPUT  -i  eth1  --h-length  6  --destination-mac
              01:00:5e:00:01:01 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27

              arptables  -A  OUTPUT  -o  eth2  --h-length  6  -j mangle --man-
              gle-mac-s 01:00:5e:00:01:02

              arptables  -A  INPUT  -i  eth2  --h-length  6  --destination-mac
              01:00:5e:00:01:02 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27

       In  the  case of TCP connections, pickup facility has to be disabled to
       avoid marking TCP ACK packets coming in the reply direction as valid.

              echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose

   comment
       Allows you to add comments (up to 256 characters) to any rule.

       --comment comment

       Example:
              iptables -A INPUT -i eth1 -m comment --comment "my local LAN"

   connbytes
       Match by how many bytes or packets a connection  (or  one  of  the  two
       flows  constituting the connection) has transferred so far, or by aver-
       age bytes per packet.

       The counters are 64-bit and are thus not expected to overflow ;)

       The primary use is to detect long-lived downloads and mark them  to  be
       scheduled using a lower priority band in traffic control.

       The  transferred  bytes per connection can also be viewed through `con-
       ntrack -L` and accessed via ctnetlink.

       NOTE that for connections which have  no  accounting  information,  the
       match  will  always return false. The "net.netfilter.nf_conntrack_acct"
       sysctl flag  controls  whether  new  connections  will  be  byte/packet
       counted.  Existing  connection  flows  will not be gaining/losing a/the
       accounting structure when be sysctl flag is flipped.

       [!] --connbytes from[:to]
              match packets  from  a  connection  whose  packets/bytes/average
              packet size is more than FROM and less than TO bytes/packets. if
              TO is omitted only FROM check is done.  "!"  is  used  to  match
              packets not falling in the range.

       --connbytes-dir {original|reply|both}
              which packets to consider

       --connbytes-mode {packets|bytes|avgpkt}
              whether  to  check the amount of packets, number of bytes trans-
              ferred or the average size (in bytes) of all packets received so
              far.  Note  that when "both" is used together with "avgpkt", and
              data is going (mainly) only in one direction (for example HTTP),
              the  average  packet  size will be about half of the actual data
              packets.

       Example:
              iptables    ..    -m    connbytes    --connbytes    10000:100000
              --connbytes-dir both --connbytes-mode bytes ...

   connlimit
       Allows  you  to restrict the number of parallel connections to a server
       per client IP address (or client address block).

       [!] --connlimit-above n
              Match if the number of existing connections is (not) above n.

       --connlimit-mask prefix_length
              Group hosts using the prefix length. For IPv4, this  must  be  a
              number  between  (including)  0  and 32. For IPv6, between 0 and
              128.

       Examples:

       # allow 2 telnet connections per client host
              iptables  -A  INPUT  -p  tcp  --syn  --dport  23  -m   connlimit
              --connlimit-above 2 -j REJECT

       # you can also match the other way around:
              iptables  -A  INPUT  -p  tcp  --syn  --dport  23  -m connlimit !
              --connlimit-above 2 -j ACCEPT

       # limit the number of parallel HTTP requests to 16 per  class  C  sized
       network (24 bit netmask)
              iptables -p tcp --syn --dport 80 -m connlimit  --connlimit-above
              16 --connlimit-mask 24 -j REJECT

       #  limit  the number of parallel HTTP requests to 16 for the link local
       network
              (ipv6)  ip6tables  -p  tcp  --syn  --dport  80  -s  fe80::/64 -m
              connlimit --connlimit-above 16 --connlimit-mask 64 -j REJECT

   connmark
       This module matches the netfilter mark field associated with a  connec-
       tion (which can be set using the CONNMARK target below).

       [!] --mark value[/mask]
              Matches  packets  in connections with the given mark value (if a
              mask is specified, this is logically ANDed with the mark  before
              the comparison).

   conntrack
       This  module,  when combined with connection tracking, allows access to
       the connection tracking state for this packet/connection.

       [!] --ctstate statelist
              statelist is a comma separated list of the connection states  to
              match.  Possible states are listed below.

       [!] --ctproto l4proto
              Layer-4 protocol to match (by number or name)

       [!] --ctorigsrc address[/mask]

       [!] --ctorigdst address[/mask]

       [!] --ctreplsrc address[/mask]

       [!] --ctrepldst address[/mask]
              Match against original/reply source/destination address

       [!] --ctorigsrcport port

       [!] --ctorigdstport port

       [!] --ctreplsrcport port

       [!] --ctrepldstport port
              Match    against    original/reply    source/destination    port
              (TCP/UDP/etc.) or GRE key.

       [!] --ctstatus statelist
              statuslist is a comma separated list of the connection  statuses
              to match.  Possible statuses are listed below.

       [!] --ctexpire time[:time]
              Match remaining lifetime in seconds against given value or range
              of values (inclusive)

       --ctdir {ORIGINAL|REPLY}
              Match packets that are flowing in the  specified  direction.  If
              this  flag  is  not  specified  at  all, matches packets in both
              directions.

       States for --ctstate:

       INVALID
              meaning that the packet is associated with no known connection

       NEW    meaning that the packet has started a new connection, or  other-
              wise  associated with a connection which has not seen packets in
              both directions, and

       ESTABLISHED
              meaning that the packet is associated with  a  connection  which
              has seen packets in both directions,

       RELATED
              meaning  that  the  packet  is starting a new connection, but is
              associated with an existing connection,  such  as  an  FTP  data
              transfer, or an ICMP error.

       UNTRACKED
              meaning  that the packet is not tracked at all, which happens if
              you use the NOTRACK target in raw table.

       SNAT   A virtual state, matching if the original source address differs
              from the reply destination.

       DNAT   A  virtual  state,  matching if the original destination differs
              from the reply source.

       Statuses for --ctstatus:

       NONE   None of the below.

       EXPECTED
              This is an expected connection (i.e. a conntrack helper  set  it
              up)

       SEEN_REPLY
              Conntrack has seen packets in both directions.

       ASSURED
              Conntrack entry should never be early-expired.

       CONFIRMED
              Connection is confirmed: originating packet has left box.

   dccp
       [!] --source-port,--sport port[:port]

       [!] --destination-port,--dport port[:port]

       [!] --dccp-types mask
              Match  when  the  DCCP packet type is one of 'mask'. 'mask' is a
              comma-separated list of packet types.  Packet types are: REQUEST
              RESPONSE  DATA  ACK  DATAACK  CLOSEREQ  CLOSE RESET SYNC SYNCACK
              INVALID.

       [!] --dccp-option number
              Match if DCP option set.

   dscp
       This module matches the 6 bit DSCP field within the TOS field in the IP
       header.  DSCP has superseded TOS within the IETF.

       [!] --dscp value
              Match against a numeric (decimal or hex) value [0-63].

       [!] --dscp-class class
              Match  the  DiffServ class. This value may be any of the BE, EF,
              AFxx or CSx classes.  It will then be converted into its accord-
              ing numeric value.

   dst
       This module matches the parameters in Destination Options header

       [!] --dst-len length
              Total length of this header in octets.

       --dst-opts type[:length][,type[:length]...]
              numeric  type  of  option  and  the length of the option data in
              octets.

   esp
       This module matches the SPIs in ESP header of IPsec packets.

       [!] --espspi spi[:spi]

   eui64
       This module matches the EUI-64 part of a stateless autoconfigured  IPv6
       address.  It compares the EUI-64 derived from the source MAC address in
       Ethernet frame with the lower 64 bits of the IPv6 source  address.  But
       "Universal/Local"  bit is not compared. This module doesn't match other
       link layer frame, and is only valid in the PREROUTING, INPUT  and  FOR-
       WARD chains.

   frag
       This module matches the parameters in Fragment header.

       [!] --fragid id[:id]
              Matches the given Identification or range of it.

       [!] --fraglen length
              This  option cannot be used with kernel version 2.6.10 or later.
              The length of Fragment header is static and this option  doesn't
              make sense.

       --fragres
              Matches if the reserved fields are filled with zero.

       --fragfirst
              Matches on the first fragment.

       --fragmore
              Matches if there are more fragments.

       --fraglast
              Matches if this is the last fragment.

   hashlimit
       hashlimit  uses hash buckets to express a rate limiting match (like the
       limit match) for a group of connections using a single  iptables  rule.
       Grouping  can be done per-hostgroup (source and/or destination address)
       and/or per-port. It gives you the ability to  express  "N  packets  per
       time quantum per group":

       matching on source host
              "1000 packets per second for every host in 192.168.0.0/16"

       matching on source prot
              "100 packets per second for every service of 192.168.1.1"

       matching on subnet
              "10000 packets per minute for every /28 subnet in 10.0.0.0/8"

       A  hash  limit option (--hashlimit-upto, --hashlimit-above) and --hash-
       limit-name are required.

       --hashlimit-upto amount[/second|/minute|/hour|/day]
              Match if the rate is below or equal  to  amount/quantum.  It  is
              specified as a number, with an optional time quantum suffix; the
              default is 3/hour.

       --hashlimit-above amount[/second|/minute|/hour|/day]
              Match if the rate is above amount/quantum.

       --hashlimit-burst amount
              Maximum initial number of packets to  match:  this  number  gets
              recharged  by  one  every  time the limit specified above is not
              reached, up to this number; the default is 5.

       --hashlimit-mode {srcip|srcport|dstip|dstport},...
              A comma-separated list of objects to take into consideration. If
              no  --hashlimit-mode option is given, hashlimit acts like limit,
              but at the expensive of doing the hash housekeeping.

       --hashlimit-srcmask prefix
              When  --hashlimit-mode  srcip  is  used,  all  source  addresses
              encountered will be grouped according to the given prefix length
              and the so-created subnet will be subject to  hashlimit.  prefix
              must be between (inclusive) 0 and 32. Note that --hashlimit-src-
              mask 0 is basically doing the same thing as not specifying srcip
              for --hashlimit-mode, but is technically more expensive.

       --hashlimit-dstmask prefix
              Like --hashlimit-srcmask, but for destination addresses.

       --hashlimit-name foo
              The name for the /proc/net/ipt_hashlimit/foo entry.

       --hashlimit-htable-size buckets
              The number of buckets of the hash table

       --hashlimit-htable-max entries
              Maximum entries in the hash.

       --hashlimit-htable-expire msec
              After how many milliseconds do hash entries expire.

       --hashlimit-htable-gcinterval msec
              How many milliseconds between garbage collection intervals.

   hbh
       This module matches the parameters in Hop-by-Hop Options header

       [!] --hbh-len length
              Total length of this header in octets.

       --hbh-opts type[:length][,type[:length]...]
              numeric  type  of  option  and  the length of the option data in
              octets.

   helper
       This module matches packets related to a specific conntrack-helper.

       [!] --helper string
              Matches packets related to the specified conntrack-helper.

              string can be "ftp" for packets  related  to  a  ftp-session  on
              default  port.  For other ports append -portnr to the value, ie.
              "ftp-2121".

              Same rules apply for other conntrack-helpers.

   hl
       This module matches the Hop Limit field in the IPv6 header.

       [!] --hl-eq value
              Matches if Hop Limit equals value.

       --hl-lt value
              Matches if Hop Limit is less than value.

       --hl-gt value
              Matches if Hop Limit is greater than value.

   icmp6
       This extension can be used if  `--protocol  ipv6-icmp'  or  `--protocol
       icmpv6' is specified. It provides the following option:

       [!] --icmpv6-type type[/code]|typename
              This  allows  specification  of  the ICMPv6 type, which can be a
              numeric ICMPv6 type, type and code, or one of  the  ICMPv6  type
              names shown by the command
               ip6tables -p ipv6-icmp -h

   iprange
       This matches on a given arbitrary range of IP addresses.

       [!] --src-range from[-to]
              Match source IP in the specified range.

       [!] --dst-range from[-to]
              Match destination IP in the specified range.

   ipv6header
       This module matches IPv6 extension headers and/or upper layer header.

       --soft Matches if the packet includes any of the headers specified with
              --header.

       [!] --header header[,header...]
              Matches the packet which EXACTLY includes all specified headers.
              The headers encapsulated with ESP header are out of scope.  Pos-
              sible header types can be:

       hop|hop-by-hop
              Hop-by-Hop Options header

       dst    Destination Options header

       route  Routing header

       frag   Fragment header

       auth   Authentication header

       esp    Encapsulating Security Payload header

       none   No Next header which matches 59 in the 'Next  Header  field'  of
              IPv6 header or any IPv6 extension headers

       proto  which  matches  any upper layer protocol header. A protocol name
              from /etc/protocols and numeric value also allowed.  The  number
              255 is equivalent to proto.

   length
       This  module  matches  the  length of the layer-3 payload (e.g. layer-4
       packet) of a packet against a specific value or range of values.

       [!] --length length[:length]

   limit
       This module matches at a limited rate using a token bucket  filter.   A
       rule  using  this  extension  will  match  until  this limit is reached
       (unless the `!' flag is used).  It can be used in combination with  the
       LOG target to give limited logging, for example.

       --limit rate[/second|/minute|/hour|/day]
              Maximum  average  matching  rate: specified as a number, with an
              optional `/second', `/minute', `/hour', or  `/day'  suffix;  the
              default is 3/hour.

       --limit-burst number
              Maximum  initial  number  of  packets to match: this number gets
              recharged by one every time the limit  specified  above  is  not
              reached, up to this number; the default is 5.

   mac
       [!] --mac-source address
              Match   source   MAC   address.    It   must   be  of  the  form
              XX:XX:XX:XX:XX:XX.  Note that this only makes sense for  packets
              coming from an Ethernet device and entering the PREROUTING, FOR-
              WARD or INPUT chains.

   mark
       This module matches the netfilter mark field associated with  a  packet
       (which can be set using the MARK target below).

       [!] --mark value[/mask]
              Matches packets with the given unsigned mark value (if a mask is
              specified, this is logically ANDed with the mask before the com-
              parison).

   mh
       This  extension is loaded if `--protocol ipv6-mh' or `--protocol mh' is
       specified. It provides the following option:

       [!] --mh-type type[:type]
              This allows specification of the Mobility Header(MH) type, which
              can be a numeric MH type, type or one of the MH type names shown
              by the command
               ip6tables -p ipv6-mh -h

   multiport
       This module matches a set of source or destination  ports.   Up  to  15
       ports  can be specified.  A port range (port:port) counts as two ports.
       It can only be used in conjunction with -p tcp or -p udp.

       [!] --source-ports,--sports port[,port|,port:port]...
              Match if the source port is one of the given  ports.   The  flag
              --sports  is  a convenient alias for this option. Multiple ports
              or port ranges are separated using a comma, and a port range  is
              specified  using  a  colon.  53,1024:65535 would therefore match
              ports 53 and all from 1024 through 65535.

       [!] --destination-ports,--dports port[,port|,port:port]...
              Match if the destination port is one of the  given  ports.   The
              flag --dports is a convenient alias for this option.

       [!] --ports port[,port|,port:port]...
              Match if either the source or destination ports are equal to one
              of the given ports.

   owner
       This module attempts to match various  characteristics  of  the  packet
       creator, for locally generated packets. This match is only valid in the
       OUTPUT and POSTROUTING chains. Forwarded packets do not have any socket
       associated with them. Packets from kernel threads do have a socket, but
       usually no owner.

       [!] --uid-owner username

       [!] --uid-owner userid[-userid]
              Matches if the packet socket's file structure (if it has one) is
              owned  by  the given user. You may also specify a numerical UID,
              or an UID range.

       [!] --gid-owner groupname

       [!] --gid-owner groupid[-groupid]
              Matches if the packet socket's file structure is  owned  by  the
              given  group.   You  may  also specify a numerical GID, or a GID
              range.

       [!] --socket-exists
              Matches if the packet is associated with a socket.

   physdev
       This module matches  on  the  bridge  port  input  and  output  devices
       enslaved  to  a bridge device. This module is a part of the infrastruc-
       ture that enables a transparent bridging IP firewall and is only useful
       for kernel versions above version 2.5.44.

       [!] --physdev-in name
              Name  of  a bridge port via which a packet is received (only for
              packets entering the INPUT, FORWARD and PREROUTING  chains).  If
              the  interface  name  ends  in  a  "+", then any interface which
              begins with this name will match. If the  packet  didn't  arrive
              through  a  bridge  device, this packet won't match this option,
              unless '!' is used.

       [!] --physdev-out name
              Name of a bridge port via which a packet is  going  to  be  sent
              (for  packets  entering  the  FORWARD,  OUTPUT  and  POSTROUTING
              chains).  If the interface name ends in a "+", then  any  inter-
              face  which  begins  with this name will match. Note that in the
              nat and mangle OUTPUT chains one cannot match on the bridge out-
              put  port,  however  one  can in the filter OUTPUT chain. If the
              packet won't leave by a bridge device or if it  is  yet  unknown
              what the output device will be, then the packet won't match this
              option, unless '!' is used.

       [!] --physdev-is-in
              Matches if the packet has entered through a bridge interface.

       [!] --physdev-is-out
              Matches if the packet will leave through a bridge interface.

       [!] --physdev-is-bridged
              Matches if the packet is being  bridged  and  therefore  is  not
              being  routed.  This is only useful in the FORWARD and POSTROUT-
              ING chains.

   pkttype
       This module matches the link-layer packet type.

       [!] --pkt-type {unicast|broadcast|multicast}

   policy
       This modules matches the policy used by IPsec for handling a packet.

       --dir {in|out}
              Used to select whether to match the policy used  for  decapsula-
              tion  or  the policy that will be used for encapsulation.  in is
              valid in the PREROUTING, INPUT and FORWARD chains, out is  valid
              in the POSTROUTING, OUTPUT and FORWARD chains.

       --pol {none|ipsec}
              Matches if the packet is subject to IPsec processing.

       --strict
              Selects  whether  to match the exact policy or match if any rule
              of the policy matches the given policy.

       [!] --reqid id
              Matches the reqid of the policy rule. The reqid can be specified
              with setkey(8) using unique:id as level.

       [!] --spi spi
              Matches the SPI of the SA.

       [!] --proto {ah|esp|ipcomp}
              Matches the encapsulation protocol.

       [!] --mode {tunnel|transport}
              Matches the encapsulation mode.

       [!] --tunnel-src addr[/mask]
              Matches  the source end-point address of a tunnel mode SA.  Only
              valid with --mode tunnel.

       [!] --tunnel-dst addr[/mask]
              Matches the destination end-point address of a tunnel  mode  SA.
              Only valid with --mode tunnel.

       --next Start  the next element in the policy specification. Can only be
              used with --strict.

   quota
       Implements network quotas by decrementing  a  byte  counter  with  each
       packet.

       --quota bytes
              The quota in bytes.

   rateest
       The  rate  estimator  can  match on estimated rates as collected by the
       RATEEST target. It supports matching on absolute bps/pps  values,  com-
       paring  two  rate estimators and matching on the difference between two
       rate estimators.

       --rateest1 name
              Name of the first rate estimator.

       --rateest2 name
              Name of the second rate estimator (if difference is to be calcu-
              lated).

       --rateest-delta
              Compare difference(s) to given rate(s)

       --rateest1-bps value

       --rateest2-bps value
              Compare bytes per second.

       --rateest1-pps value

       --rateest2-pps value
              Compare packets per second.

       [!] --rateest-lt
              Match if rate is less than given rate/estimator.

       [!] --rateest-gt
              Match if rate is greater than given rate/estimator.

       [!] --rateest-eq
              Match if rate is equal to given rate/estimator.

       Example:  This  is  what can be used to route outgoing data connections
       from an FTP server over two lines based on the available  bandwidth  at
       the time the data connection was started:

       # Estimate outgoing rates

       iptables  -t  mangle  -A  POSTROUTING -o eth0 -j RATEEST --rateest-name
       eth0 --rateest-interval 250ms --rateest-ewma 0.5s

       iptables -t mangle -A POSTROUTING -o  ppp0  -j  RATEEST  --rateest-name
       ppp0 --rateest-interval 250ms --rateest-ewma 0.5s

       # Mark based on available bandwidth

       iptables  -t  mangle  -A  balance  -m conntrack --ctstate NEW -m helper
       --helper ftp -m rateest --rateest-delta --rateest1 eth0  --rateest-bps1
       2.5mbit  --rateest-gt  --rateest2 ppp0 --rateest-bps2 2mbit -j CONNMARK
       --set-mark 1

       iptables -t mangle -A balance -m  conntrack  --ctstate  NEW  -m  helper
       --helper  ftp -m rateest --rateest-delta --rateest1 ppp0 --rateest-bps1
       2mbit --rateest-gt --rateest2 eth0 --rateest-bps2 2.5mbit  -j  CONNMARK
       --set-mark 2

       iptables -t mangle -A balance -j CONNMARK --restore-mark

   recent
       Allows  you to dynamically create a list of IP addresses and then match
       against that list in a few different ways.

       For example, you can create a "badguy" list out of people attempting to
       connect  to  port 139 on your firewall and then DROP all future packets
       from them without considering them.

       --set, --rcheck, --update and --remove are mutually exclusive.

       --name name
              Specify the list to use for the commands. If no  name  is  given
              then DEFAULT will be used.

       [!] --set
              This  will  add the source address of the packet to the list. If
              the source address is already in the list, this will update  the
              existing entry. This will always return success (or failure if !
              is passed in).

       --rsource
              Match/save the source address of each packet in the recent  list
              table. This is the default.

       --rdest
              Match/save  the destination address of each packet in the recent
              list table.

       [!] --rcheck
              Check if the source address of the packet is  currently  in  the
              list.

       [!] --update
              Like  --rcheck,  except it will update the "last seen" timestamp
              if it matches.

       [!] --remove
              Check if the source address of the packet is  currently  in  the
              list  and  if  so that address will be removed from the list and
              the rule will return true. If the address is not found, false is
              returned.

       --seconds seconds
              This  option must be used in conjunction with one of --rcheck or
              --update. When used, this will narrow the match to  only  happen
              when  the  address  is  in the list and was seen within the last
              given number of seconds.

       --hitcount hits
              This option must be used in conjunction with one of --rcheck  or
              --update.  When  used, this will narrow the match to only happen
              when the address is in the list and packets  had  been  received
              greater  than  or  equal  to the given value. This option may be
              used along with --seconds  to  create  an  even  narrower  match
              requiring a certain number of hits within a specific time frame.
              The maximum value for the hitcount parameter  is  given  by  the
              "ip_pkt_list_tot"  parameter  of  the  xt_recent  kernel module.
              Exceeding this value on the command line will cause the rule  to
              be rejected.

       --rttl This option may only be used in conjunction with one of --rcheck
              or --update. When used, this will narrow the match to only  hap-
              pen  when  the address is in the list and the TTL of the current
              packet matches that of the packet which hit the --set rule. This
              may  be  useful  if  you  have problems with people faking their
              source address in order to DoS you via this module by  disallow-
              ing  others access to your site by sending bogus packets to you.

       Examples:

              iptables -A FORWARD -m recent --name badguy  --rcheck  --seconds
              60 -j DROP

              iptables  -A FORWARD -p tcp -i eth0 --dport 139 -m recent --name
              badguy --set -j DROP

       Steve's  ipt_recent  website  (http://snowman.net/projects/ipt_recent/)
       also has some examples of usage.

       /proc/net/xt_recent/*  are  the current lists of addresses and informa-
       tion about each entry of each list.

       Each file in /proc/net/xt_recent/ can be read from to see  the  current
       list or written two using the following commands to modify the list:

       echo +addr >/proc/net/xt_recent/DEFAULT
              to add addr to the DEFAULT list

       echo -addr >/proc/net/xt_recent/DEFAULT
              to remove addr from the DEFAULT list

       echo / >/proc/net/xt_recent/DEFAULT
              to flush the DEFAULT list (remove all entries).

       The module itself accepts parameters, defaults shown:

       ip_list_tot=100
              Number of addresses remembered per table.

       ip_pkt_list_tot=20
              Number of packets per address remembered.

       ip_list_hash_size=0
              Hash  table  size. 0 means to calculate it based on ip_list_tot,
              default: 512.

       ip_list_perms=0644
              Permissions for /proc/net/xt_recent/* files.

       ip_list_uid=0
              Numerical UID for ownership of /proc/net/xt_recent/* files.

       ip_list_gid=0
              Numerical GID for ownership of /proc/net/xt_recent/* files.

   rt
       Match on IPv6 routing header

       [!] --rt-type type
              Match the type (numeric).

       [!] --rt-segsleft num[:num]
              Match the `segments left' field (range).

       [!] --rt-len length
              Match the length of this header.

       --rt-0-res
              Match the reserved field, too (type=0)

       --rt-0-addrs addr[,addr...]
              Match type=0 addresses (list).

       --rt-0-not-strict
              List of type=0 addresses is not a strict list.

   sctp
       [!] --source-port,--sport port[:port]

       [!] --destination-port,--dport port[:port]

       [!] --chunk-types {all|any|only} chunktype[:flags] [...]
              The flag letter in upper case indicates  that  the  flag  is  to
              match if set, in the lower case indicates to match if unset.

              Chunk  types:  DATA  INIT  INIT_ACK SACK HEARTBEAT HEARTBEAT_ACK
              ABORT  SHUTDOWN  SHUTDOWN_ACK   ERROR   COOKIE_ECHO   COOKIE_ACK
              ECN_ECNE ECN_CWR SHUTDOWN_COMPLETE ASCONF ASCONF_ACK

              chunk type            available flags
              DATA                  U B E u b e
              ABORT                 T t
              SHUTDOWN_COMPLETE     T t

              (lowercase means flag should be "off", uppercase means "on")

       Examples:

       iptables -A INPUT -p sctp --dport 80 -j DROP

       iptables -A INPUT -p sctp --chunk-types any DATA,INIT -j DROP

       iptables -A INPUT -p sctp --chunk-types any DATA:Be -j ACCEPT

   state
       This  module,  when combined with connection tracking, allows access to
       the connection tracking state for this packet.

       [!] --state state
              Where state is a comma separated list of the  connection  states
              to  match.   Possible states are INVALID meaning that the packet
              could not be identified for some reason which  includes  running
              out  of  memory  and  ICMP  errors which don't correspond to any
              known connection, ESTABLISHED meaning that the packet is associ-
              ated  with  a  connection  which has seen packets in both direc-
              tions, NEW meaning that the packet has started a new connection,
              or  otherwise  associated  with  a connection which has not seen
              packets in both directions, and RELATED meaning that the  packet
              is starting a new connection, but is associated with an existing
              connection, such as an FTP data  transfer,  or  an  ICMP  error.
              UNTRACKED  meaning  that the packet is not tracked at all, which
              happens if you use the NOTRACK target in raw table.

   statistic
       This module matches packets based on some statistic condition.  It sup-
       ports two distinct modes settable with the --mode option.

       Supported options:

       --mode mode
              Set  the matching mode of the matching rule, supported modes are
              random and nth.

       --probability p
              Set the probability from 0 to 1 for  a  packet  to  be  randomly
              matched. It works only with the random mode.

       --every n
              Match  one  packet  every nth packet. It works only with the nth
              mode (see also the --packet option).

       --packet p
              Set the initial counter value (0 <= p <= n-1, default 0) for the
              nth mode.

   string
       This  modules  matches  a  given  string by using some pattern matching
       strategy. It requires a linux kernel >= 2.6.14.

       --algo {bm|kmp}
              Select the pattern matching strategy. (bm = Boyer-Moore,  kmp  =
              Knuth-Pratt-Morris)

       --from offset
              Set the offset from which it starts looking for any matching. If
              not passed, default is 0.

       --to offset
              Set the offset from which it starts looking for any matching. If
              not passed, default is the packet size.

       [!] --string pattern
              Matches the given pattern.

       [!] --hex-string pattern
              Matches the given pattern in hex notation.

   tcp
       These  extensions can be used if `--protocol tcp' is specified. It pro-
       vides the following options:

       [!] --source-port,--sport port[:port]
              Source port or port range specification. This can  either  be  a
              service  name  or  a port number. An inclusive range can also be
              specified, using the format first:last.  If the  first  port  is
              omitted,  "0"  is  assumed;  if  the last is omitted, "65535" is
              assumed.  If the first port is greater than the second one  they
              will  be  swapped.   The  flag --sport is a convenient alias for
              this option.

       [!] --destination-port,--dport port[:port]
              Destination port or port range specification.  The flag  --dport
              is a convenient alias for this option.

       [!] --tcp-flags mask comp
              Match  when  the TCP flags are as specified.  The first argument
              mask is the flags which we should examine, written as  a  comma-
              separated  list,  and  the second argument comp is a comma-sepa-
              rated list of flags which must be set.  Flags are: SYN  ACK  FIN
              RST URG PSH ALL NONE.  Hence the command
               iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN
              will  only match packets with the SYN flag set, and the ACK, FIN
              and RST flags unset.

       [!] --syn
              Only match TCP packets with the SYN bit set and the ACK,RST  and
              FIN  bits cleared.  Such packets are used to request TCP connec-
              tion initiation; for example, blocking such packets coming in an
              interface  will  prevent  incoming TCP connections, but outgoing
              TCP  connections  will  be  unaffected.   It  is  equivalent  to
              --tcp-flags  SYN,RST,ACK,FIN  SYN.  If the "!" flag precedes the
              "--syn", the sense of the option is inverted.

       [!] --tcp-option number
              Match if TCP option set.

   tcpmss
       This matches the TCP MSS  (maximum  segment  size)  field  of  the  TCP
       header.  You can only use this on TCP SYN or SYN/ACK packets, since the
       MSS is only negotiated during the TCP handshake at  connection  startup
       time.

       [!] --mss value[:value]
              Match a given TCP MSS value or range.

   time
       This  matches  if the packet arrival time/date is within a given range.
       All options are optional, but are ANDed when specified.

       --datestart YYYY[-MM[-DD[Thh[:mm[:ss]]]]]

       --datestop YYYY[-MM[-DD[Thh[:mm[:ss]]]]]

              Only match during the given time, which must be in ISO 8601  "T"
              notation.   The  possible  time  range is 1970-01-01T00:00:00 to
              2038-01-19T04:17:07.

              If --datestart or --datestop are not specified, it will  default
              to 1970-01-01 and 2038-01-19, respectively.

       --timestart hh:mm[:ss]

       --timestop hh:mm[:ss]

              Only  match during the given daytime. The possible time range is
              00:00:00 to 23:59:59. Leading zeroes are allowed (e.g.  "06:03")
              and correctly interpreted as base-10.

       [!] --monthdays day[,day...]

              Only match on the given days of the month. Possible values are 1
              to 31. Note that specifying 31  will  of  course  not  match  on
              months  which  do  not have a 31st day; the same goes for 28- or
              29-day February.

       [!] --weekdays day[,day...]

              Only match on the given weekdays. Possible values are Mon,  Tue,
              Wed,  Thu,  Fri,  Sat, Sun, or values from 1 to 7, respectively.
              You may also use two-character variants (Mo, Tu, etc.).

       --utc

              Interpret the times given for --datestart, --datestop,  --times-
              tart and --timestop to be UTC.

       --localtz

              Interpret  the times given for --datestart, --datestop, --times-
              tart and --timestop to be local kernel time. (Default)

       EXAMPLES. To match on weekends, use:

              -m time --weekdays Sa,Su

       Or, to match (once) on a national holiday block:

              -m time --datestart 2007-12-24 --datestop 2007-12-27

       Since the stop time is actually inclusive, you would need the following
       stop time to not match the first second of the new day:

              -m      time     --datestart     2007-01-01T17:00     --datestop
              2007-01-01T23:59:59

       During lunch hour:

              -m time --timestart 12:30 --timestop 13:30

       The fourth Friday in the month:

              -m time --weekdays Fr --monthdays 22,23,24,25,26,27,28

       (Note that this exploits a certain mathematical  property.  It  is  not
       possible  to  say "fourth Thursday OR fourth Friday" in one rule. It is
       possible with multiple rules, though.)

   tos
       This module matches the 8-bit Type of Service field in the IPv4  header
       (i.e.   including  the  "Precedence" bits) or the (also 8-bit) Priority
       field in the IPv6 header.

       [!] --tos value[/mask]
              Matches packets with the given TOS mark  value.  If  a  mask  is
              specified,  it  is  logically ANDed with the TOS mark before the
              comparison.

       [!] --tos symbol
              You can specify a symbolic name when using  the  tos  match  for
              IPv4.  The list of recognized TOS names can be obtained by call-
              ing iptables with -m tos -h.  Note that this implies a  mask  of
              0x3F, i.e. all but the ECN bits.

   u32
       U32  tests  whether quantities of up to 4 bytes extracted from a packet
       have specified values. The specification of what to extract is  general
       enough to find data at given offsets from tcp headers or payloads.

       [!] --u32 tests
              The  argument amounts to a program in a small language described
              below.

              tests := location "=" value | tests "&&" location "=" value

              value := range | value "," range

              range := number | number ":" number

       a single number, n, is interpreted the same as n:n. n:m is  interpreted
       as the range of numbers >=n and <=m.

           location := number | location operator number

           operator := "&" | "<<" | ">>" | "@"

       The  operators &, <<, >> and && mean the same as in C.  The = is really
       a set membership operator and the value syntax describes a set.  The  @
       operator is what allows moving to the next header and is described fur-
       ther below.

       There are currently some artificial implementation limits on  the  size
       of the tests:

           *  no more than 10 of "=" (and 9 "&&"s) in the u32 argument

           *  no more than 10 ranges (and 9 commas) per value

           *  no more than 10 numbers (and 9 operators) per location

       To describe the meaning of location, imagine the following machine that
       interprets it. There are three registers:

              A is of type char *, initially the address of the IP header

              B and C are unsigned 32 bit integers, initially zero

       The instructions are:

              number B = number;

              C = (*(A+B)<<24) + (*(A+B+1)<<16) + (*(A+B+2)<<8) + *(A+B+3)

              &number C = C & number

              << number C = C << number

              >> number C = C >> number

              @number A = A + C; then do the instruction number

       Any access of memory outside [skb->data,skb->end] causes the  match  to
       fail.  Otherwise the result of the computation is the final value of C.

       Whitespace is allowed but not required in the tests. However, the char-
       acters  that  do occur there are likely to require shell quoting, so it
       is a good idea to enclose the arguments in quotes.

       Example:

              match IP packets with total length >= 256

              The IP header contains a total length field in bytes 2-3.

              --u32 "0 & 0xFFFF = 0x100:0xFFFF"

              read bytes 0-3

              AND that with 0xFFFF (giving bytes 2-3), and test  whether  that
              is in the range [0x100:0xFFFF]

       Example: (more realistic, hence more complicated)

              match ICMP packets with icmp type 0

              First test that it is an ICMP packet, true iff byte 9 (protocol)
              = 1

              --u32 "6 & 0xFF = 1 && ...

              read bytes 6-9, use & to throw away bytes 6-8  and  compare  the
              result  to  1.  Next  test that it is not a fragment. (If so, it
              might be part of such a packet but we cannot always tell.) N.B.:
              This  test  is  generally  needed  if you want to match anything
              beyond the IP header. The last 6 bits of byte 6 and all of  byte
              7 are 0 iff this is a complete packet (not a fragment). Alterna-
              tively, you can allow first fragments by only testing the last 5
              bits of byte 6.

               ... 4 & 0x3FFF = 0 && ...

              Last  test:  the  first byte past the IP header (the type) is 0.
              This is where we have to use the @syntax. The length of  the  IP
              header (IHL) in 32 bit words is stored in the right half of byte
              0 of the IP header itself.

               ... 0 >> 22 & 0x3C @ 0 >> 24 = 0"

              The first 0 means read bytes 0-3, >>22 means shift that 22  bits
              to  the  right.  Shifting  24 bits would give the first byte, so
              only 22 bits is four times that plus a few more bits.  &3C  then
              eliminates  the  two  extra bits on the right and the first four
              bits of the first byte. For instance,  if  IHL=5,  then  the  IP
              header is 20 (4 x 5) bytes long. In this case, bytes 0-1 are (in
              binary)  xxxx0101  yyzzzzzz,  >>22  gives  the  10   bit   value
              xxxx0101yy and &3C gives 010100. @ means to use this number as a
              new offset into the packet, and read four  bytes  starting  from
              there.  This  is the first 4 bytes of the ICMP payload, of which
              byte 0 is the ICMP type. Therefore, we simply shift the value 24
              to the right to throw out all but the first byte and compare the
              result with 0.

       Example:

              TCP payload bytes 8-12 is any of 1, 2, 5 or 8

              First we test that the packet is a tcp packet (similar to ICMP).

              --u32 "6 & 0xFF = 6 && ...

              Next, test that it is not a fragment (same as above).

               ... 0 >> 22 & 0x3C @ 12 >> 26 & 0x3C @ 8 = 1,2,5,8"

              0>>22&3C as above computes the number of bytes in the IP header.
              @ makes this the new offset into the packet, which is the  start
              of the TCP header. The length of the TCP header (again in 32 bit
              words) is the left half of  byte  12  of  the  TCP  header.  The
              12>>26&3C  computes  this  length  in  bytes  (similar to the IP
              header before). "@" makes this the  new  offset,  which  is  the
              start  of  the  TCP  payload. Finally, 8 reads bytes 8-12 of the
              payload and = checks whether the result is any of 1, 2, 5 or  8.

   udp
       These  extensions can be used if `--protocol udp' is specified. It pro-
       vides the following options:

       [!] --source-port,--sport port[:port]
              Source port or port range specification.  See the description of
              the --source-port option of the TCP extension for details.

       [!] --destination-port,--dport port[:port]
              Destination  port or port range specification.  See the descrip-
              tion of the --destination-port option of the TCP  extension  for
              details.

TARGET EXTENSIONS
       ip6tables  can  use extended target modules: the following are included
       in the standard distribution.

   CLASSIFY
       This module allows you to set the skb->priority value (and  thus  clas-
       sify the packet into a specific CBQ class).

       --set-class major:minor
              Set  the  major  and  minor  class  value. The values are always
              interpreted as hexadecimal even if no 0x prefix is given.

   CONNMARK
       This module sets the netfilter mark value associated with a connection.
       The mark is 32 bits wide.

       --set-xmark value[/mask]
              Zero out the bits given by mask and XOR value into the ctmark.

       --save-mark [--nfmask nfmask] [--ctmask ctmask]
              Copy  the  packet  mark (nfmark) to the connection mark (ctmark)
              using the given masks. The new nfmark  value  is  determined  as
              follows:

              ctmark = (ctmark & ~ctmask) ^ (nfmark & nfmask)

              i.e.  ctmask  defines what bits to clear and nfmask what bits of
              the nfmark to XOR into the ctmark. ctmask and nfmask default  to
              0xFFFFFFFF.

       --restore-mark [--nfmask nfmask] [--ctmask ctmask]
              Copy  the  connection  mark (ctmark) to the packet mark (nfmark)
              using the given masks. The new ctmark  value  is  determined  as
              follows:

              nfmark = (nfmark & ~nfmask) ^ (ctmark & ctmask);

              i.e.  nfmask  defines what bits to clear and ctmask what bits of
              the ctmark to XOR into the nfmark. ctmask and nfmask default  to
              0xFFFFFFFF.

              --restore-mark is only valid in the mangle table.

       The following mnemonics are available for --set-xmark:

       --and-mark bits
              Binary  AND  the  ctmark  with  bits.  (Mnemonic for --set-xmark
              0/invbits, where invbits is the binary negation of bits.)

       --or-mark bits
              Binary OR  the  ctmark  with  bits.  (Mnemonic  for  --set-xmark
              bits/bits.)

       --xor-mark bits
              Binary  XOR  the  ctmark  with  bits.  (Mnemonic for --set-xmark
              bits/0.)

       --set-mark value[/mask]
              Set the connection mark. If a mask is specified then only  those
              bits set in the mask are modified.

       --save-mark [--mask mask]
              Copy  the  nfmark  to  the  ctmark. If a mask is specified, only
              those bits are copied.

       --restore-mark [--mask mask]
              Copy the ctmark to the nfmark. If  a  mask  is  specified,  only
              those bits are copied. This is only valid in the mangle table.

   CONNSECMARK
       This  module  copies  security markings from packets to connections (if
       unlabeled), and from connections back to packets (also  only  if  unla-
       beled).   Typically  used in conjunction with SECMARK, it is only valid
       in the mangle table.

       --save If the packet has a security marking, copy it to the  connection
              if the connection is not marked.

       --restore
              If  the packet does not have a security marking, and the connec-
              tion does, copy the security marking from the connection to  the
              packet.

   CT
       The  CT  target allows to set parameters for a packet or its associated
       connection. The target attaches a "template" connection tracking  entry
       to the packet, which is then used by the conntrack core when initializ-
       ing a new ct entry. This target is thus only valid in the "raw"  table.

       --notrack
              Disables connection tracking for this packet.

       --helper name
              Use  the  helper  identified by name for the connection. This is
              more flexible than loading the  conntrack  helper  modules  with
              preset ports.

       --ctevents event[,...]
              Only  generate  the  specified conntrack events for this connec-
              tion. Possible event types are: new,  related,  destroy,  reply,
              assured, protoinfo, helper, mark (this refers to the ctmark, not
              nfmark), natseqinfo, secmark (ctsecmark).

       --expevents event[,...]
              Only generate the specified expectation events for this  connec-
              tion.  Possible event types are: new.

       --zone id
              Assign this packet to zone id and only have lookups done in that
              zone.  By default, packets have zone 0.

   DSCP
       This target allows to alter the value of the DSCP bits within  the  TOS
       header  of  the IPv4 packet.  As this manipulates a packet, it can only
       be used in the mangle table.

       --set-dscp value
              Set the DSCP field to a numerical value (can be decimal or hex)

       --set-dscp-class class
              Set the DSCP field to a DiffServ class.

   HL
       This is used to modify the Hop Limit field  in  IPv6  header.  The  Hop
       Limit  field is similar to what is known as TTL value in IPv4.  Setting
       or incrementing the Hop Limit field can potentially be very  dangerous,
       so  it should be avoided at any cost. This target is only valid in man-
       gle table.

       Don't ever set or increment the value on packets that leave your  local
       network!

       --hl-set value
              Set the Hop Limit to `value'.

       --hl-dec value
              Decrement the Hop Limit `value' times.

       --hl-inc value
              Increment the Hop Limit `value' times.

   LOG
       Turn  on  kernel  logging of matching packets.  When this option is set
       for a rule, the Linux kernel will print some information on all  match-
       ing  packets  (like  most  IPv6  IPv6-header fields) via the kernel log
       (where it can be read with dmesg or syslogd(8)).  This is a "non-termi-
       nating  target", i.e. rule traversal continues at the next rule.  So if
       you want to LOG the packets you refuse, use two separate rules with the
       same matching criteria, first using target LOG then DROP (or REJECT).

       --log-level level
              Level of logging (numeric or see syslog.conf(5)).

       --log-prefix prefix
              Prefix  log messages with the specified prefix; up to 29 letters
              long, and useful for distinguishing messages in the logs.

       --log-tcp-sequence
              Log TCP sequence numbers. This is a security risk if the log  is
              readable by users.

       --log-tcp-options
              Log options from the TCP packet header.

       --log-ip-options
              Log options from the IPv6 packet header.

       --log-uid
              Log the userid of the process which generated the packet.

   MARK
       This target is used to set the Netfilter mark value associated with the
       packet.  It can, for example, be used in conjunction with routing based
       on fwmark (needs iproute2). If you plan on doing so, note that the mark
       needs to be set in the PREROUTING chain of the mangle table  to  affect
       routing.  The mark field is 32 bits wide.

       --set-xmark value[/mask]
              Zeroes out the bits given by mask and XORs value into the packet
              mark ("nfmark"). If mask is omitted, 0xFFFFFFFF is assumed.

       --set-mark value[/mask]
              Zeroes out the bits given by mask and ORs value into the  packet
              mark. If mask is omitted, 0xFFFFFFFF is assumed.

       The following mnemonics are available:

       --and-mark bits
              Binary  AND  the  nfmark  with  bits.  (Mnemonic for --set-xmark
              0/invbits, where invbits is the binary negation of bits.)

       --or-mark bits
              Binary OR  the  nfmark  with  bits.  (Mnemonic  for  --set-xmark
              bits/bits.)

       --xor-mark bits
              Binary  XOR  the  nfmark  with  bits.  (Mnemonic for --set-xmark
              bits/0.)

   NFLOG
       This target provides logging of matching packets. When this  target  is
       set  for  a  rule,  the Linux kernel will pass the packet to the loaded
       logging backend to log the packet. This is usually used in  combination
       with  nfnetlink_log as logging backend, which will multicast the packet
       through a netlink socket to the specified multicast group. One or  more
       userspace  processes may subscribe to the group to receive the packets.
       Like LOG, this is a non-terminating target, i.e. rule traversal contin-
       ues at the next rule.

       --nflog-group nlgroup
              The netlink group (1 - 2^32-1) to which packets are (only appli-
              cable for nfnetlink_log). The default value is 0.

       --nflog-prefix prefix
              A prefix string to include in the log message, up to 64  charac-
              ters long, useful for distinguishing messages in the logs.

       --nflog-range size
              The  number  of bytes to be copied to userspace (only applicable
              for nfnetlink_log). nfnetlink_log instances  may  specify  their
              own range, this option overrides it.

       --nflog-threshold size
              Number of packets to queue inside the kernel before sending them
              to userspace (only applicable for nfnetlink_log). Higher  values
              result in less overhead per packet, but increase delay until the
              packets reach userspace. The default value is 1.

   NFQUEUE
       This target is an extension of the QUEUE target. As opposed  to  QUEUE,
       it  allows  you  to put a packet into any specific queue, identified by
       its 16-bit queue number.  It can only  be  used  with  Kernel  versions
       2.6.14  or later, since it requires the nfnetlink_queue kernel support.
       The queue-balance option was added in Linux 2.6.31.

       --queue-num value
              This specifies the QUEUE number to use. Valid queue numbers  are
              0 to 65535. The default value is 0.

       --queue-balance value:value
              This  specifies  a range of queues to use. Packets are then bal-
              anced across the given queues.  This  is  useful  for  multicore
              systems:  start  multiple  instances of the userspace program on
              queues x, x+1, .. x+n and use "--queue-balance x:x+n".   Packets
              belonging  to the same connection are put into the same nfqueue.

   NOTRACK
       This target disables connection tracking for all packets matching  that
       rule.

       It can only be used in the raw table.

   RATEEST
       The RATEEST target collects statistics, performs rate estimation calcu-
       lation and saves the results for later  evaluation  using  the  rateest
       match.

       --rateest-name name
              Count  matched  packets into the pool referred to by name, which
              is freely choosable.

       --rateest-interval amount{s|ms|us}
              Rate measurement interval, in seconds, milliseconds or microsec-
              onds.

       --rateest-ewmalog value
              Rate measurement averaging time constant.

   REJECT
       This  is  used  to send back an error packet in response to the matched
       packet: otherwise it is equivalent to DROP so it is a terminating  TAR-
       GET,  ending  rule  traversal.  This target is only valid in the INPUT,
       FORWARD and OUTPUT chains,  and  user-defined  chains  which  are  only
       called  from those chains.  The following option controls the nature of
       the error packet returned:

       --reject-with type
              The type given can be icmp6-no-route,  no-route,  icmp6-adm-pro-
              hibited,  adm-prohibited,  icmp6-addr-unreachable, addr-unreach,
              icmp6-port-unreachable or port-unreach which return  the  appro-
              priate  ICMPv6  error  message  (port-unreach  is  the default).
              Finally, the option tcp-reset can be used on  rules  which  only
              match  the TCP protocol: this causes a TCP RST packet to be sent
              back.  This is mainly useful for blocking ident (113/tcp) probes
              which  frequently  occur  when sending mail to broken mail hosts
              (which won't accept your mail otherwise).  tcp-reset can only be
              used with kernel versions 2.6.14 or later.

   SECMARK
       This  is used to set the security mark value associated with the packet
       for use by security subsystems such as SELinux.  It is  only  valid  in
       the mangle table. The mark is 32 bits wide.

       --selctx security_context

   TCPMSS
       This  target  allows to alter the MSS value of TCP SYN packets, to con-
       trol the maximum size for that connection (usually limiting it to  your
       outgoing  interface's  MTU  minus  40  for IPv4 or 60 for IPv6, respec-
       tively).  Of course, it can only be used in conjunction with -p tcp.

       This target is used to overcome criminally braindead  ISPs  or  servers
       which  block  "ICMP  Fragmentation  Needed"  or "ICMPv6 Packet Too Big"
       packets.  The symptoms of this problem are that everything  works  fine
       from  your  Linux  firewall/router,  but  machines  behind it can never
       exchange large packets:
        1) Web browsers connect, then hang with no data received.
        2) Small mail works fine, but large emails hang.
        3) ssh works fine, but scp hangs after initial handshaking.
       Workaround: activate this option and add a rule to your  firewall  con-
       figuration like:

               iptables -t mangle -A FORWARD -p tcp --tcp-flags SYN,RST SYN
                           -j TCPMSS --clamp-mss-to-pmtu

       --set-mss value
              Explicitly sets MSS option to specified value. If the MSS of the
              packet is already lower than value, it  will  not  be  increased
              (from  Linux  2.6.25  onwards) to avoid more problems with hosts
              relying on a proper MSS.

       --clamp-mss-to-pmtu
              Automatically clamp MSS value to (path_MTU - 40  for  IPv4;  -60
              for  IPv6).   This  may not function as desired where asymmetric
              routes with differing path MTU exist -- the kernel uses the path
              MTU which it would use to send packets from itself to the source
              and destination IP addresses. Prior to Linux  2.6.25,  only  the
              path  MTU  to  the destination IP address was considered by this
              option; subsequent kernels also consider the  path  MTU  to  the
              source IP address.

       These options are mutually exclusive.

   TCPOPTSTRIP
       This  target will strip TCP options off a TCP packet. (It will actually
       replace them by NO-OPs.) As such, you will  need  to  add  the  -p  tcp
       parameters.

       --strip-options option[,option...]
              Strip  the  given option(s). The options may be specified by TCP
              option number or  by  symbolic  name.  The  list  of  recognized
              options  can be obtained by calling iptables with -j TCPOPTSTRIP
              -h.

   TOS
       This module sets the Type of Service field in the IPv4 header  (includ-
       ing  the  "precedence"  bits) or the Priority field in the IPv6 header.
       Note that TOS shares the same bits as DSCP and ECN. The TOS  target  is
       only valid in the mangle table.

       --set-tos value[/mask]
              Zeroes  out  the  bits  given  by  mask  and XORs value into the
              TOS/Priority field. If mask is omitted, 0xFF is assumed.

       --set-tos symbol
              You can specify a symbolic name when using the  TOS  target  for
              IPv4.  It  implies  a  mask  of 0xFF. The list of recognized TOS
              names can be obtained by calling iptables with -j TOS -h.

       The following mnemonics are available:

       --and-tos bits
              Binary AND the TOS value  with  bits.  (Mnemonic  for  --set-tos
              0/invbits, where invbits is the binary negation of bits.)

       --or-tos bits
              Binary  OR  the  TOS  value  with  bits. (Mnemonic for --set-tos
              bits/bits.)

       --xor-tos bits
              Binary XOR the TOS value  with  bits.  (Mnemonic  for  --set-tos
              bits/0.)

   TRACE
       This  target  marks packes so that the kernel will log every rule which
       match the packets as those traverse the  tables,  chains,  rules.  (The
       ipt_LOG  or  ip6t_LOG  module is required for the logging.) The packets
       are  logged  with   the   string   prefix:   "TRACE:   tablename:chain-
       name:type:rulenum  "  where type can be "rule" for plain rule, "return"
       for implicit rule at the end of a user defined chain and  "policy"  for
       the policy of the built in chains.
       It can only be used in the raw table.

DIAGNOSTICS
       Various error messages are printed to standard error.  The exit code is
       0 for correct functioning.  Errors which appear to be caused by invalid
       or  abused  command  line parameters cause an exit code of 2, and other
       errors cause an exit code of 1.

BUGS
       Bugs?  What's this? ;-)  Well...  the  counters  are  not  reliable  on
       sparc64.

COMPATIBILITY WITH IPCHAINS
       This  ip6tables is very similar to ipchains by Rusty Russell.  The main
       difference is that the chains INPUT and OUTPUT are only  traversed  for
       packets  coming into the local host and originating from the local host
       respectively.  Hence every packet only passes through one of the  three
       chains  (except  loopback traffic, which involves both INPUT and OUTPUT
       chains); previously a forwarded packet would pass through all three.

       The other main difference is that -i refers to the input interface;  -o
       refers  to  the  output  interface,  and both are available for packets
       entering the  FORWARD  chain.   There  are  several  other  changes  in
       ip6tables.

SEE ALSO
       ip6tables-save(8), ip6tables-restore(8), iptables(8), iptables-save(8),
       iptables-restore(8), libipq(3).

       The packet-filtering-HOWTO details iptables usage for packet filtering,
       the  netfilter-extensions-HOWTO  details the extensions that are not in
       the standard distribution, and the netfilter-hacking-HOWTO details  the
       netfilter internals.
       See http://www.netfilter.org/.

AUTHORS
       Rusty  Russell wrote iptables, in early consultation with Michael Neul-
       ing.

       Marc Boucher made Rusty abandon ipnatctl  by  lobbying  for  a  generic
       packet  selection  framework  in iptables, then wrote the mangle table,
       the owner match, the mark stuff, and ran around doing cool stuff every-
       where.

       James Morris wrote the TOS target, and tos match.

       Jozsef Kadlecsik wrote the REJECT target.

       Harald  Welte  wrote  the  ULOG and NFQUEUE target, the new libiptc, as
       well as TTL match+target and libipulog.

       The Netfilter Core Team is: Marc Boucher,  Martin  Josefsson,  Yasuyuki
       Kozakai,  Jozsef  Kadlecsik, Patrick McHardy, James Morris, Pablo Neira
       Ayuso, Harald Welte and Rusty Russell.

       ip6tables man page created by Andras Kis-Szabo, based on  iptables  man
       page written by Herve Eychenne <rv@wallfire.org>.

iptables 1.4.4                                                    IP6TABLES(8)
 

Scannen Sie den Barcode um die Webseite zu öffnen


Quelle: http://www.trinler.net/de/service/doc/linux/man.html?command=ip6tables
Gedruckt am: 15.12.2017 07:26 GMT+0100 (2017-12-15T07:26:40+01:00)